
Pruebas de Carga

2025

WICHAT
GRUPO ES 4C

ASW – INGENIERÍA INFÓRMATICA DE SOFTWARE

Contenido
Initial Situation .. 1

Used Tool... 1

Tests .. 2

Previous Configuration .. 2

Test 1: 120 users ... 2

Test 2: 300 users ... 4

Test 3: 600 users ... 5

Test 4: 1200 users ... 7

Conclusions ... 9

Initial Situation

The application is deployed on an Azure virtual machine with the following specifications:

- Linux as the operating system

- Ubuntu 24.04 LTS image

- 30 GB of storage

- Standard D2s v3 size

- 8 GB of RAM

- 2 vCPUs

- x64 architecture

The version of the deployed application used for testing is as follows.

Used Tool

To carry out the load testing, the free tool Gatling—recommended by the teaching staff—was

used. Specifically, version 3.13 of Gatling Bundle was employed. Gatling is a load testing tool

based on Scala, designed to simulate a large number of concurrent users on web applications

and APIs, with a focus on performance and automation.

This version stands out for its automation and simplicity, allowing the use of both the recorder

and testing features from a Maven project, with scripts written in Scala (though Java is also

supported). Gatling generates reports in HTML format, which will be presented below.

https://github.com/Arquisoft/wichat_es4c/tree/v2.3

Tests

Previous Configuration

Before running the tests, the Recorder tool is used to capture the requests we want to test and

convert them into code. In our case, we chose to use Java. Each simulated user performs the

following actions:

- Access the registration window

- Add a new user

- Log in

- Play the game (answering 10 questions)

- Make 2 queries to the LLM

- View the ranking

- View the user profile

- Modify settings and save

- Automatic requests: load multimedia resources, update statistics, fetch in-game

settings, etc.

After generating the Java class containing the code to perform these requests, it is slightly

modified to generate random users and simulate simultaneous user insertions. The class used

can be accessed through the following link.

Finally, the load tests are executed, varying the number of users:

Test 1: 120 users

First, 120 users are tested (2 users per second for 60 seconds), yielding the following results:

https://github.com/Arquisoft/wichat_es4c/blob/master/loadtests/computerdatabase/WichatSimulation.java

With 120 users, we observe that 80.7% of the requests are successfully completed and on

time. However, errors are concentrated solely in the redirections for loading multimedia

resources (429) and the queries to the LLM (likely because Gemini has a request limit within a

specific time frame, which seems to be 31).

The full report can be accessed through the following link.

Test 2: 300 users

Next, 300 users are tested (5 users per second for 60 seconds), yielding the following results:

https://github.com/Arquisoft/wichat_es4c/tree/master/loadtests/informes/prueba-120

The results are almost identical, with 80.1% of requests completed on time. As for the errors,

once again, they are solely attributed to the redirections for multimedia resource loading and

the queries to the LLM.

While the redirections for multimedia resource loading fail at a similar rate, the number of

completed LLM requests matches exactly with the previous test (31), which reinforces the idea

that the Gemini request limit is the cause, and explains the slight 0.6% difference in completed

requests.

The full report can be accessed through the following link.

Test 3: 600 users

In the third iteration, 600 users are tested (10 users per second for 60 seconds), yielding the

following results:

https://github.com/Arquisoft/wichat_es4c/tree/master/loadtests/informes/prueba-300

For 600 users, we begin to observe the first issues: although the application continues to

respond correctly to 80% of the requests, it is noted that 10.2% had response times exceeding

800 ms.

As for the errors, they are still concentrated solely on the redirections for multimedia content

loading and the queries to the LLM (the 31 request limit remains in place). A single error (400)

was observed when adding a user, which is likely due to a collision in the random user

generation.

The full report can be accessed through the following link.

Test 4: 1200 users

In the final iteration, 1200 users are tested (20 users per second for 60 seconds), yielding the

following results:

https://github.com/Arquisoft/wichat_es4c/tree/master/loadtests/informes/prueba-600

For 1200 users, a decrease in completed requests can already be observed, with less than 75%

being completed. Additionally, 10% of requests had a response time of over 800 ms.

This time, the errors are more evenly distributed:

- Resource loading redirection (error 429): Again, these errors account for the majority,

but they maintain a similar proportion to the previous tests.

- Add user (Request timeout): It can be observed that for just over half of the "add user"

requests, the server is unable to keep up.

- Log in (error 401): Authorization error, most likely caused by trying to log in with users

that could not be registered due to the previous errors.

- Get settings (mostly error 404, Request timeout): The 404 error is likely due to trying

to load settings for a user who isn’t registered, due to the previous "add user" errors.

The rest of the requests behave similarly, with errors being split between Request timeout and

error 404 (likely due to the failures in adding users).

An interesting point is that, this time, the questions to the LLM resulted in 61 completed

answers (almost double the 31 from the previous tests), which may suggest that the request

limit to Gemini was refreshed, allowing for 31 more (30 in this case) requests.

The full report can be accessed through the following link.

Conclusions

We can conclude that the application generally performs well, even under high user demand,

maintaining completed response rates above 75%.

It is observed that with 600 users, the application begins to experience issues with response

times, and with 1200 users, some requests fail to complete (although they are few). It is also

noted that errors in the "add user" requests affected some subsequent requests, as they tried

to load resources for non-existent users.

Finally, after reviewing the data and conducting a brief investigation, it seems that the Gemini

API does not allow more than 31 requests within a short time period, although we cannot

confirm this information 100%.

https://github.com/Arquisoft/wichat_es4c/tree/master/loadtests/informes/prueba-1200

	Initial Situation
	Used Tool
	Tests
	Previous Configuration
	Test 1: 120 users
	Test 2: 300 users
	Test 3: 600 users
	Test 4: 1200 users

	Conclusions

