Software Architecture

EN)

o /< School of
— f :» Computer
LN Science

Universidad de Oviedo

University of Oviedo

Communicating
Software Architecture

s

SOFTWARE
2025- ARCHITECTURE

School of Computer Science

Jose E. Labra Gayo

Contents

Communicating software architecture
Goal of documentation
Documentation stakeholders
Views
Documentation and agile projects
Guidelines

Documentation approaches
Kuchten 4+1 views
Views and beyond
C4 model
Arc42

University of Oviedo

School of Computer Science

Comunicating Software architecture

Software Architecture

edo ‘

Architecture is more than code

The code doesn't tell the whole story

Questions the code doesn't answer
How the software fits into existing system landscape?
Why were the technologies chosen?
What's the overall structure of the system?
Where are the components deployed at runtime?
How do the components communicate?
How and where to add new functionality?
What common patterns and principles are used?
How the interfaces with other systems work?
How security/scalability/... has been achieved?

University of Ovi

School of Computer Science

Software Architecture

of Oviedo

Goal of documentation

ity

Univers

Main goal: communicate the structure
Understand the big picture

Create a shared vision: team and stakeholders
Common vocabulary

Describe what the sofware is and how is being built
Focus for technical conversations about new features
Provide a map to navigate the source code

Justify design decisions

Help new developers that join the team

School of Computer Science

Documentation requirements

ity of Oviedo

Understandable by different stakeholders
Technical and non-technical stakeholders
Reflect the reality
Be careful of the model-code gap
Move fast and adapt to changes
Adapt to agile projects
Evolutionary architecture

School of Computer Science

Rules for good documentation

of Oviedo

ity

Write documentation from reader's point of view

Find who will be the readers and their expectations
Avoid unnecessary repetition (DRY principle)
Avoid ambiguity

Explain the notation (or use a standard one)

For diagrams, use legends

Use a standard organization or template
Add TBD/To do when necessary
Organize for easy of reference/links

Record rationale
Keep documentation current

Univers

School of Computer Science

Problem vs Solution space

University of Oviedo

Software architecture = path from problem to solution
Understand the problem
Design a solution

Rationale for the solutions proposed
Record different design alternatives

Problem Solution

Space Space
Stakeholders Building blocks
Context Interfaces

Quality goals Components
Constraints Patterns/styles
Principles Tactics

School of Computer Science

Views & viewpoints

of Oviedo

ity

Software architecture is a complex entity
It cannot be described in a single 1-dimension
It requires several views for different stakeholders

View = A representation of a system with regards to some concerns
Different views support different goals and uses

Viewpoint = A collection of patterns, templates and conventions for
constructing a view
Examples: structure, behaviour, deployment

Univers

iow is what you s€e .
ﬁ\\\\ll‘ieWpoint is where you are looking from

School of Computer Science

Software Architecture

Documenting views

Introduction
Textual description of the view
Diagram(s)
Add descriptive title including structures depicted
Create a legend to explain meaning of symbols
Don't forget to explain the lines/arrows
List of elements and responsibilities
Give descriptive names
Define your terms (include a glossary)
Rationale

ity of Oviedo

Univers

School of Computer Science

Software Architecture

edo

Documenting views

University of Ovi

Strive for Consistency and simplicity

Keep elements consistent
Colours, shapes, arrows,...
If you use a colour scheme, follow it consistently
Check names across views,...
Record possible inconsistencies
Avoid too many details
Remember Miller's law
Average person can keep 7 (£ 2) elements in memory

School of Computer Science

Tools for diagrams

ity of Oviedo

Sketches

Drawing tools for diagrams
Text-based diagramming tools
Modeling tools
Reverse-engineering the model
Architecture description languages

School of Computer Science

Sketches

Most people start with a sketch on paper or whiteboard
Great way to collaborate and exchange ideas
Usually intended for short lifespan
But sooner or later, they must be recorded
Simple approach: Photos
And later conversion to dlagrams or models

University of Oviedo

School of Computer Science

Example from twitter/X: https://x.com/elonmusk/status/15903899029531803649

Fuente: https://camodel.com

https://c4model.com/
https://x.com/elonmusk/status/1593899029531803649
https://x.com/elonmusk/status/1593899029531803649

Software Architecture

Drawing tools for Diagrams

of Oviedo

ity

Desktop
Microsoft Visio, Omnigraffle, SimpleDiagrams, ...

Web-based:
draw.io, gliffy, LucidChart,...

Drawing tools of general-purpose tools:
Word, Powerpoint, Keynote,...

Front -
ﬂ End <€¢=Pp Backend

Univers

School of Computer Science

Sketches — Diagrams

Example: X/Twitter architecture

University of Oviedo

| Twitter Architecture 2022

people Prediction Service
discovery ad mixer onst::sirg;ng A
Web service
iPhone ®
Android b Home Scorer
rap
iPhone —» Federated : : :
web Strato Column flitnelpeiMixer Témellne Feature Hydration
Thrift -~

« inject ads, who-to-follow, S=1-Ye} ” %
> content hydration, « conversation module Mcache

visibility « cursoring | pagination
Twitter filtering - tweat deduplication

Fror::tend . s | - served data logging
LSRR (being deprecated) —

Candidate
Fetch

Read Path - m il Prediction Service
EarlyBird
Next-gen System > > o
(arnatan] Gizmoduo] Socigrapn
_Space

Candidate Sources

Original post by Elon Musk: ByteByteGo diagram
https://x.com/elonmusk/status/1593899029531803649 https://x.com/alexxubyte/status/15904008281340530688

School of Computer Science

https://x.com/alexxubyte/status/1594008281340530688
https://x.com/alexxubyte/status/1594008281340530688
https://x.com/elonmusk/status/1593899029531803649

Software Architecture

Text-based diagramming tools

Usually based on UML

WebSequenceDiagrams, yUML, nomnoml
PlantUML.: htip://plantuml.com/

University of Oviedo

Agent Manager User
! init l l
@startuml P i |
Agent -> Agent : init | sendemaill) | |
Agent -> Manager : sendEmail() i . o l
I re I [
Agent <-- Manager : reply X < oY | |
Agent -> Manager : blabla(X) blablalx) l
. User -> Manager : check(X) ! g Sheck{ X)) |
£ User <-- Manager : ok | ok S
£ @enduml | { |
g Agent Manager User

PlantUML Online: https://www.planttext.com/

http://plantuml.com/
https://www.planttext.com/

Modeling tools

ity of Oviedo

Allow to create a model of the software system
Visual representations are generated from model
Alternatives:

Sparx Enterprise Architect, Visual Paradigm, Archi, StarUML,
ArgoUML, Modelio,...

Usually support different notations
UML, SysML, BPMN, ArchiMate

Useful for up-front design
Good for refactoring & renaming components...

School of Computer Science

Reverse-engineering the model

of Oviedo

ity

Univers

Some of the previous modelling tools support this
Static analysis tools:

Structure101, NDepend, Lattix, Sonargraph,...
Create the model based on existing code

Useful to visualize existing codebases
Problem:

Resulting diagrams tend to include too much details
Difficult to see the architecture

School of Computer Science

Software Architecture

Architecture Description Languages: ADLs

iversity of Oviedo

° Formally define the architecture of a system
Create textual descriptions instead of diagrams
Formal specification
Describes the structure and behaviour
Mostly in academic environments
Not very popular in industrial settings
Some examples:
xArch/xADL (http://isr.uci.edu/projects/xarchuci/)
ACME (http://www.cs.cmu.edu/~able/)
AADL (http://www.aadl.info/)

School of Computer Science

http://isr.uci.edu/projects/xarchuci/
http://www.cs.cmu.edu/~able/
http://www.aadl.info/

Software architecture templates

ity of Oviedo

Several possibilities
Kruchten 4+1 views
Views & beyond
C4 model
Arc42 templates 4l

School of Computer Science

Software Architecture

Kruchten 4+1 views

Embraced as part of Rational Unified Process
S concurrent views
1 Logical view: functionality of the system
2 Development view: modules, layers,...
3 Process view: execution units, concurrency,...
4 Physical view: Infrastructure & deployment topology
(+1) Scenarios view: selected use cases or scenarios

University of Oviedo

Performance Communications
Scalability

End-user Programmers
Functionality . Software management
Logical Development

g view view

Q

‘g 1 < Scenarios > 1

= =

=

: Pr(?cess Deplgyment

k> view VvView System engineers

-g Integrators Topology

<=

2]

Views and beyond

Select a set of viewpoints

According to stakeholder's needs
Define views according to those viewpoints
Add a "Beyond views" document

Overall architecture

Information about how views relate

University of Oviedo

School of Computer Science

C4 model (https://c4model.com/)

University of Oviedo

Describe
Context: System or enterprise context diagram
Container diagram: high level shape
Components diagram: zoom and decompose
Code: UML class diagrams, ER diagrams, ...

Documentation guidebook

Operation and support
Decision log

Context Code
: Functional overview Data
g Quality attributes Infrastructure architecture
£ Constraints Deployment
§ Principles Development environment

Arc42 https://arc42.org/

Structure to document software systems
Goal: Clear, simple and effective

Templates available for several systems
Asciidoc
Word (docx)
Markdown
LaTeX
ReStructuredText
Confluence

ity of Oviedo

School of Computer Science

https://arc42.org/

Software Architecture

Arc42 overview

ity of Oviedo

1.- Introduction and goals
Problem| 2.- Constraints

_3.- Context & scope

(" 4.- Solution strategy

5.- Building block view
6.- Runtime view

/.- Deployment view
Solution |8 _ Crosscutting concepts
9.- Architectural decisions
10.- Quality requirements
_11.- Risks and technical debt /
12.-Glossary

Univers

School of Computer Science

Picture source: https://commons.wikimedia.org/wiki/File:Ficherosclasicoscatalogo.JPG

https://commons.wikimedia.org/wiki/File:Ficherosclasicoscatalogo.JPG

Software Architecture

1 - Introduction and goals

University of Oviedo

Short description of:
- Requirements

- Main quality goals
- Stakeholders

Intreduction and Quality
Goals Goals

. Goal Description Who? | Expectation?
Functions

Picture source: hitps://arc42.org/overview/

Stakeholder

School of Computer Science

https://arc42.org/overview/

Software Architecture

1 Introduction and goals
1.1 Requirements overview

ity of Oviedo

Short description of functional requirements
Use-case tables

It can link to existing requirements documents
Full requirement documents are usually longer
Select architecturally significant requirements

School of Computer Science

Software Architecture

1 Introduction and goals
1.2 Main quality goals

of Oviedo

ity

Univers

Enumerate the main quality goals

Quality goals:
Main quality attributes that the system needs to achieve

Format: A simple table can suffice

Example:
https://biking.michael-simons.eu/docs/index.html# quality goals

School of Computer Science

https://biking.michael-simons.eu/docs/index.html#_quality_goals
https://biking.michael-simons.eu/docs/index.html#_quality_goals
https://biking.michael-simons.eu/docs/index.html#_quality_goals

How to choose quality attributes?

ity of Oviedo

Quality attribute workshops
Involve stakeholders to prioritize quality attributes
It may be helpful to distinguish
Runtime quality attributes
Performance, security, availability, usability,...
Non-runtime quality attributes
Modifiability, portability, reusability,testability
Business quality attributes
Cost, schedule, time-to-market, ...

Univers

School of Computer Science

Software Architecture

How to choose quality attributes?

1ISO-25010 Software Quality Model
2 parts: Product quality, Quality in-use

University of Oviedo

Product
Quality
1 1 I 1 1 1
Functional Performance Compati- . Relia- . Maintaina-
e Usabili S Securit
suitability efficiency Y bility

In-use

|
| l ' ' :
. » e Freedom Context

School of Computer Science

Software Architecture

1 Introduction and goals
1.3 Stakeholders

Stakeholder: person who affects, is affected or can
contribute to the system and its architecture
Make explicit expectations and motivation

Format: table or map

of Oviedo

ity

Univers

Stakeholder Description Expectations,
motivations

School of Computer Science

Software Architecture

edo

2 - Constraints

University of Ovi

Anything that constrains teams in design and implementation
decisions

Sometimes at organization level
Decisions already taken
Format: a table with explanations
Can be divided in organizational, technical, etc.

Constraint | Explanation \Y;

@ e

Picture source: https://arc42.org/overview/

School of Computer Science

https://arc42.org/overview/

Software Architecture

edo

3 - Context and scope

University of Ovi

Delimits the system from external partners
Neighbouring users and systems

Specifies the external interfaces

Business and technical perspective

Scope & Context
§ business technical
.§
5 =
: g —{
S __El
5
g
=
%

Picture source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture

3. Context and Scope
3.1 Business context

Specify all partners involved in the environment
Format: Diagram or table

Diagrams that show the system as a black box
Optional: Explanation of external interfaces

ity of Oviedo

School of Computer Science

Software Architecture

3 Context and scope
3.2 Technical context

ity of Oviedo

Specify Technical interfaces that link the system with the
environment

Format: Diagram or table
Usually: UML deployment diagrams

School of Computer Science

Business context vs technical context

Business Context Technical Context % %

University of Oviedo

Admin Client
Reporting . SSH HTTPS
N ,/ User
\ /
\\ / Amazon-AWS Cloud
\ ¥ co2
Communications | | HTTP/REST Reporting
« 5
SyStem Email-
SMS
«extern» < - - WebShop WebShop
Email-/SMS
- \
P
s \
’
e N OpenVPN / HTTP
«extern» «gxtern»
B"“ng Payment Accounting Office

Billing

Payment

School of Computer Science

4 - Solution strategy

University of Oviedo

Summary of fundamental decisions and strategies
Can include:

- Technology

- Top-level decomposition

- Approaches to achieve top quality goals

- Relevant organizational decisions.
Format: short text description

Keep explanations of key decisions short

School of Computer Science

Picture source: https://commons.wikimedia.org/wiki/File:Light Bulb_or Idea_Flat Icon_Vector.svg

https://commons.wikimedia.org/wiki/File:Light_Bulb_or_Idea_Flat_Icon_Vector.svg

Software Architecture

5 - Bulding block view

ity of Oviedo

Static decomposition of system

Modules of the system
Hierarchy of white boxes containing black boxes
Format:

Start with overall overview diagram

Decompose into other diagrams
Usually: UML Component diagrams

Univers

|

|

i |
Fa

|

| I

| L

| 1
| [
| L

Source: https://arc42.org/overview/

School of Computer Science

https://arc42.org/overview/

Software Architecture

: 6 - Runtime vi
untime view
s
g
E Behavior of building blocks as scenarios
- Important use cases or features
Interactions at critical external interfaces
Error and exception behavior.
Format:
Many notations

Natural language (list of steps)

UML sequence diagrams

Flowcharts

BPMN
0 ! :
[’D
é}) Tkl Ty ™
: \
g“ - ek r- D
g | T
S -
kS _J-"_]
3
£
&

Source: https://arc42.org/overview/

https://arc42.org/overview/

[/ - Deployment view

University of Oviedo

Technical infrastructure with environments, computers,
processors, topologies.

Mapping of (software) building blocks to infrastructure

Format:
Usually: UML deployment diagrams
Add mapping tables

School of Computer Science

Source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture

edo

8 - Crosscutting concepts

University of Ovi

Approaches relevant in multiple parts of system

Topics like:
Domain model Crosscutting
Architecture pattern and styles Concepts
Specific rules Logging
Pﬂr:sll::i
Patterns

Domain Model

School of Computer Science

Source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture

O Architectural decisions

University of Oviedo

Important, expensive, critical, large scale or risky architecture decisions
Include rationale for the decisions

Format:
List or table ordered by importance
Architecture decision record for important decisions

>

School of Computer Science

Source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture

10 - Quality requirements

ity of Oviedo

Univers

Quality requirements as scenarios
Quality tree to provide high-level overview

The most important quality goals should have been described in section 1
(quality goals)

O Metric
% e
\)

Event, stimulus Reaction

School of Computer Scien

Software Architecture

10. Quality requirements
10.1 Quality tree

A quality tree with quality scenarios as leafs
Include priorities for an overview

Sometimes, large number of quality requirements.
Format:

A mind map with quality categories as branches
Include links to scenarios of the following section

ity of Oviedo

School of Computer Science

Software Architecture

10. Quality requirements
10.2 Quality scenarios

of Oviedo

ity

Univers

Scenarios describe what should happen when a stimulus
arrives at the system.

2 types:

Usage: runtime reaction to a certain stimulus.
"The system reacts to a user’s request within 1 sec.”
Change: modification of the system or its environment

"A new user type must be added" g\
Format: Tabular or free form text. LE_@

o Metric
QO

/__/\\/__/

Event, stimulus Reaction

School of Computer Science

Source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture

11 - Risks and technical debt

ity of Oviedo

Univers

Known technical risks or technical debt

What potential problems exist?

What does the development team feel miserable about?
Format:

List or risks/technical debts

Include suggested measures to minimize, mitigate or avoid risks or
reduce technical debts.

School of Computer Science

Source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture

edo

12 - Glossary

University of Ovi

Important domain and technical terms

Terms used by stakeholders when discussing the system
Common vocabulary

Translation reference in multi-language environments

Format: table

School of Computer Science

Source: https://arc42.org/overview/

https://arc42.org/overview/

Architecturally evident coding style

ity of Oviedo

Drop hints about architecture in the code
Allow readers to infer the design from the code
The code should reflect the architecture
Examples:
Components as packages
Modules in different repos/folders
Some tools that check/enforce architectural constraints
https://www.lattix.com/, https://structurizr.com/

Univers

School of Computer Science

https://www.lattix.com/
https://structurizr.com/

	Sección predeterminada
	Diapositiva 1: Communicating Software Architecture
	Diapositiva 2: Contents
	Diapositiva 3: Comunicating Software architecture
	Diapositiva 4: Architecture is more than code
	Diapositiva 5: Goal of documentation
	Diapositiva 6: Documentation requirements
	Diapositiva 7: Rules for good documentation
	Diapositiva 8: Problem vs Solution space
	Diapositiva 9: Views & viewpoints
	Diapositiva 10: Documenting views
	Diapositiva 11: Documenting views
	Diapositiva 12: Tools for diagrams
	Diapositiva 13: Sketches
	Diapositiva 14: Drawing tools for Diagrams
	Diapositiva 15: Sketches  Diagrams
	Diapositiva 16: Text-based diagramming tools
	Diapositiva 17: Modeling tools
	Diapositiva 18: Reverse-engineering the model
	Diapositiva 19: Architecture Description Languages: ADLs

	Documentation_Arc42
	Diapositiva 20: Software architecture templates
	Diapositiva 21: Kruchten 4+1 views
	Diapositiva 22: Views and beyond
	Diapositiva 23: C4 model (https://c4model.com/)
	Diapositiva 24: Arc42 https://arc42.org/
	Diapositiva 25: Arc42 overview
	Diapositiva 26: 1 - Introduction and goals
	Diapositiva 27: 1 Introduction and goals 1.1 Requirements overview
	Diapositiva 28: 1 Introduction and goals 1.2 Main quality goals
	Diapositiva 29: How to choose quality attributes?
	Diapositiva 30: How to choose quality attributes?
	Diapositiva 31: 1 Introduction and goals 1.3 Stakeholders
	Diapositiva 32: 2 - Constraints
	Diapositiva 33: 3 - Context and scope
	Diapositiva 34: 3. Context and Scope 3.1 Business context
	Diapositiva 35: 3 Context and scope 3.2 Technical context
	Diapositiva 36: Business context vs technical context
	Diapositiva 37: 4 - Solution strategy
	Diapositiva 38: 5 - Bulding block view
	Diapositiva 39: 6 - Runtime view
	Diapositiva 40: 7 - Deployment view
	Diapositiva 41: 8 - Crosscutting concepts
	Diapositiva 42: 9 Architectural decisions
	Diapositiva 43: 10 - Quality requirements
	Diapositiva 44: 10. Quality requirements 10.1 Quality tree
	Diapositiva 45: 10. Quality requirements 10.2 Quality scenarios
	Diapositiva 46: 11 - Risks and technical debt
	Diapositiva 47: 12 - Glossary
	Diapositiva 48: Architecturally evident coding style

