SOFTWARE
ARCHITECTURE

2024-25

Jose Emilio Labra Gayo
Pablo Gonzalez

Irene Cid

Diego Martin

. 3

Escuela de f‘:%\
! ’) Ingenieria —

Informatica
Universidad de Oviedo

Lab 11

Monitoring and profiling: observability

Software Architecture | |

Monitoring and profiling
Quality attribute: Observability

Monitoring: Observe the behaviour at runtime while software is running
Dashboards
Usually in production (after deployment)

Profiling: Measure performance of a software while it is running
|dentify parts of a system that contribute to performance problems
Find where to focus the efforts to improve performance
Usually when developing/testing (before deployment)

School of Computer Science, University of Oviedo

Software Architecture | |

Profiling

Monitors an application while it is running
Records performance (CPU & memory usage)

JavaScript:

Chrome (Timeline), Firefox Developer Edition (Performance tool)
Server-side:

JVisualVM, JProfiler, YourKit, JConsole

Monitoring: Graphite, Datadog, Prometheus, Graphana

VisualVM

https://visualvm.qgithub.io/
jvisualvm

School of Computer Science, University of Oviedo

https://visualvm.github.io/

Software Architecture | |

Java/server JVisualVM

4] Java VisualvM - b X

_Eﬂe Applica}iﬁqs View Tools Window Help

SE SE0 T

| Applications x] =l || StartPage x] é es,uniovi.asw.Application (pid 3352) x} III| @ @
= @] I:}OBGIId i 10655 Overview Monitor Threads (), Sampler (&) Profiler

am ~ =~ 20 A .

-] VisualvM - es.uniovi.asw.Application (pid 3352)

é org.jetbrains.idea.maven.server.RemoteM g —

- & org.codehaus.plexus.dassworlds.launcher oo bRy Memory /] Classes Theess

un|0v1.asw.Apphcahon (pid 3352) Uptime: 7 min 24 sec Peiam e | o
-2 Snapshots
o P
CPU X | Heap | Metaspace X

."8
g 100% I
[
[=]
2 50%
A | P
g 0% 311 \ . . , . Ij‘ A\’Q‘IM_. ' !
-E 8:44 845 8:48 8:45 8:48
) [CPU usage [GC activity [0 Heap size [Used heap
)
g Classes X Threads X
)
ko)
2] 20,000 S
I P .
2 S
a 10,000 ct”
g
Q 0 r T T
Q 8:44 8:46 8:48 :
[
© [0 Total loaded dasses [Shared loaded dasses [@ Live threads [l Daemon threads
p—
=]
=]
=
O
n

Software Architecture

Browser: developer tools

Profiling/check performance

Tools for Web Developers

Home Chrome DevTools Lighthouse Puppeteer Workbox Chrome User Experience Report

Home Contents

Open DevTools We've created a set of resources to help you ensure your site remains available and accessible to all during the COVID-19 situation. Get started

Css Simulate a mobile CPU
,.8 Console Set up the demo
.Q Network Home > Products > Web > Tools for Web Developers > Chrome DevTools 1:7 {‘(1} j:({\{ Record runtime performance
g Storage Analyze the results
qs Command Menu Get Started Wlth AnalyZ|ng Runtlme Performance Analyze frames per second
Z’ Mobile Simulation Find the bottleneck
ot DOM Bonus: Analyze the optimized
12 X version
[JavaScript By Kayce Basques
o))) Next steps
S Performance Technical Writer, Chrome DevTools & Lighthouse
or=

Get Started

ﬂ Elements Console Sources Network Performance Memory Application Security Audits 02 41

B C ©® #* ¥ | developersgooglecom.. ¥ | @ Screenshots @ Memory W
sooms | 2000ms 2500 HF‘”“”"“ 3.90n'=;—” |u~“| 3500 ms 4000 ms 4500 ms 5000 ms 5500 ms 6000 ms

pES—

B JSHeap B Documents @ Nodes & Listeners B GPU Memory

summary Bottom-Up Call Tree Event Log

Console What's New X

School of Computer Science, Un

https://developers.google.com/web/tools/chrome-devtools/evaluate-performance

https://developers.google.com/web/tools/chrome-devtools/evaluate-performance

Software Architecture | |

Example with Google Chrome

Incognito mode
At the top right, click the three dots and then New Incognito Window.

Windows, Linux, or Chrome OS: Press Ctrl + Shift + n.
Mac: Press gb + Shift + n.

DevTools

Windows, Linux: Control+Shift+I
Mac: Command+Option+I

School of Computer Science, University of Oviedo

Software Architecture

Example with Google Chrome

https://googlechrome.github.io/devtools-samples/jank/

Janky Animation X

\ 39 C' @ Secure https://googlechrome.github.io,

[(] FElements Console Sources Network » o1 : X

<!

Add 10 Copyright 2016 Google Inc.

Licensed under the Apache License, Version 2.8 (the “License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

) http://www.apache.org/licenses/LICENSE-2.0

a Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
Stop See the License for the specific language governing permissions and
limitations under the License.

—

Optimize
_8 - ¥ <body- == 50 P
raw— erformance> >2 x Slowdown

Q <img class="proto mover up" src=",,/network/gs/109o-1024px.png" style X
.; eft: Ovw; top: 479px;]
& Help <img_class="proto mover up" src="../network/qs/10qo-1024px.png" style=

htmi

|

° Styles | Event Listeners DOM Breakpoints Properties ® & Developer Tools - https://googlechrome.github.io/devtools-samplesjank/
b i N0V, Jexs k) [w] Elements Console Sources Performance @1
= element.style {
2 } ® C © @ Screenshots || Memory &

body {
g] height: 1@@vh; Disable JavaScript Samples Metwark: Mo throttling v
o= width: 100vw;

} Enable acvanced paint instrumentation [slow) I CPLE Zx slowdown ¥ I

*{ styles.css:15

margin:» 0;
I L o padding: » 0;
Click the record button @ or hit 3 Eto capture a new recording.
a body { user agent stylesheet| fiter Show all

display: block; Click the reload button ' or hit 3 R to record and evaluate the page load.
Aargintd Spx;

» display block

After recording, select an area of interest in the overview by dragging.
Then, zoom and pan the timeline with the mouse
Learn maone

Performance>Record
click Add 10 (20 times)
try Optimize / Un-optimize

School of Computer Science, Un

Stop

Software Architecture | |

Example with Google Chrome

Profile result:

[w ﬂ Elements Sources Network Performance Memaory Application Console Security Audits
® C ©® | & ¥ |googechrome.github.io #1 Screenshots Memory

1000 ms 2000 ms 3000 ms 4000 ms 5000 ms &000 ms 7000 ms B000 ms 2000 ms 10000 ms 11000 ms
- - . - [1§] ENE NN N E— — — E— —

Frames per Second I
CpPU

DevTools: CPU profile parser is fixing 169 missing samples.

111111 LA A AAM A A A A e Mo A e et~ lalln 1 alanflanllnflonl f— Ll A
1000 ms 2000 ms 3000 ms 4000 ms 5000 ms 6000 ms 7000 ms 8000 ms ~eng ms
» Frames
Add 10

P Interactions
-8 @ JS Heap[1.9 MB - 3.1 MB] @ Documents[1 - 1] & Nodes[74 -2 376] & Listeners5-5] @ GPU Memory "' subtract 10 ¢ .
] - ']
. b y o |
St Un-Optimize | e =
N e ', g @
% | ‘ | | b l'.. %] '
7]
et | ‘ | F = = u o m
2 |'|||“||||\'|||I ' L
2 Aiminiill L 4 L R
5 . g ,_ "

- . N
- . '
8 hnly) ESERp @R SRl Summary Bottom-Up Call Tree Event Log % K
= i No Groupi e a L
o e @ Broupima N Range: 37 ms-11.90 s "% aeas .
K3} Self Time Total Time v | Activity L T L
e - == & -mm =
o Bottleneck [&] 32001 ms [Seripting [- , .. = "+
3 0.4ms 3.6% 4.6ms 41.1% | » [Event 4568.7 ms [Rendering S e
a 2.1ms 19.1% 46ms 41.0% | » || app.update 1853 1290.7 ms I Painting . "o
g g ini ms

E 05ms 49% 40ms 35.4 % | » app.init 563.4 ms Other
(=) 24ms 21.3 % 2.4ms 21.2 % | » M Recalculate Stvle
Q Ol 214986 ms [| Idle
G -
,S [® | top v | @ | Fiter -
=3
=}
=
9
2]

Software Architecture | |

Other tools for browser

RAIL model:
Response, Animation, Idle, Load

https://developers.google.com/web/fundamentals/performance/rail

i€ [0 Elements Console Sources Network Performance Memory Lighthouse > A1 @1 # F X
Z @

https://webpagetest.org/easy
Lighthouse (with Chrome)

9 Generate a Lighthouse report

Mode Learn more Device Categories

@ Navigation (Default) @ Moabile Performance

() Timespan () Desktop Accessibility

() Snapshot Best practices
SEO

Progressive Web App

Plugins
[J Publisher Ads

School of Computer Science, University of Oviedo

https://developers.google.com/web/fundamentals/performance/rail
https://webpagetest.org/easy

Software Architecture | |

ty of Oviedo

School of Computer Science, Universi

G

Grafana

Server side monitoring

Cloud platforms like Azure provide monitoring solutions

Also available in Google Cloud, Amazon AWS, Alibaba Cloud...
In the case of Azure: Azure Monitor

We can also set up our own monitoring solution
Typical software: Prometheus and Grafana

Guide:
https://qithub.com/Arquisoft/wichat 0/blob/master/gatewayservice/README.md

https://azure.microsoft.com/es-es/products/monitor
https://github.com/Arquisoft/wichat_0/blob/master/gatewayservice/README.md

Software Architecture | |

Server side monitoring

We use a library to extract metrics from gatewayservice

npm install prom-client express-prom-bundle

const metricsMiddleware:RequestHandler = promBundle({includeMethod: true});
app.use(metricsMiddleware) ;

If we launch the gatewayservice, in /metrics we can see raw data can be
used by Prometheus to store it and by Grafana to plot nice charts

We can choose which metrics to measure [doc]

School of Computer Science, University of Oviedo

https://www.npmjs.com/package/express-prom-bundle

Software Architecture

sity of Oviedo

School of Computer Science, Univer

Server side monitoring 9

Grafana cannot use this data directly, we need

Prometheus

 Prometheus retrieves data exposed by a service (e.g. gateway) and stores
it in a time series database so it can be consumed by Grafana

* We configured a docker image [prom/prometheus] with a single file

global:
scrape_interval: 5s
sCcrape_configs:
- job_name: "example-nodejs-app”
ctatic_configs:

- targets: ["gatewayservice:8888"]

https://prometheus.io/

I ———
Server side monitoring

* How to configure Grafana
« Grafana will use Prometheus as data source
* We also have a docker image for running it [grafana/grafana]
« We can configure datasource and dashboard (which charts to plot)

School of Computer Science, University of Oviedo

Software Architecture

Example of Real Grafana Dashboards

https://grafana.wikimedia.orq/

https://grafana.wikimedia.org/

Software Architecture | |

Links
Monitoring & Profiling

Get Started With Analyzing Runtime Performance

https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/

How to Use the Timeline Tool
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance timeline-tool#profile-js

School of Computer Science, University of Oviedo

	Slide 1
	Slide 2: Monitoring and profiling
	Slide 3: Profiling
	Slide 4: Java/server JVisualVM
	Slide 5: Browser: developer tools
	Slide 6: Example with Google Chrome
	Slide 7: Example with Google Chrome
	Slide 8: Example with Google Chrome
	Slide 9: Other tools for browser
	Slide 13: Server side monitoring
	Slide 14: Server side monitoring
	Slide 15: Server side monitoring
	Slide 16: Server side monitoring
	Slide 17: Example of Real Grafana Dashboards
	Slide 18: Links

