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Monitoring and profiling
Quality attribute: Observability

Monitoring: Observe the behaviour at runtime while software is running
Dashboards
Usually in production (after deployment)

Profiling: Measure performance of a software while it is running
|dentify parts of a system that contribute to performance problems
Find where to focus the efforts to improve performance
Usually when developing/testing (before deployment)
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Profiling

Monitors an application while it is running
Records performance (CPU & memory usage)

JavaScript:

Chrome (Timeline), Firefox Developer Edition (Performance tool)
Server-side:

JVisualVM, JProfiler, YourKit, JConsole

Monitoring: Graphite, Datadog, Prometheus, Graphana

VisualVM

https://visualvm.qgithub.io/
jvisualvm

School of Computer Science, University of Oviedo
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Java/server JVisualVM
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Browser: developer tools

Profiling/check performance

Tools for Web Developers

Home Chrome DevTools Lighthouse Puppeteer Workbox Chrome User Experience Report

Home Contents

Open DevTools We've created a set of resources to help you ensure your site remains available and accessible to all during the COVID-19 situation. Get started

Css Simulate a mobile CPU
,.8 Console Set up the demo
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Example with Google Chrome

Incognito mode
At the top right, click the three dots and then New Incognito Window.

Windows, Linux, or Chrome OS: Press Ctrl + Shift + n.
Mac: Press gb + Shift + n.

DevTools

Windows, Linux: Control+Shift+I
Mac: Command+Option+I

School of Computer Science, University of Oviedo
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Example with Google Chrome

https://googlechrome.github.io/devtools-samples/jank/
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Example with Google Chrome

Profile result:
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Other tools for browser

RAIL model:
Response, Animation, Idle, Load

https://developers.google.com/web/fundamentals/performance/rail

i€ [0 Elements Console Sources Network  Performance  Memory  Lighthouse > A1 @1 # F X
Z @

https://webpagetest.org/easy
Lighthouse (with Chrome)

9 Generate a Lighthouse report

Mode Learn more Device Categories

@ Navigation (Default) @ Moabile Performance

() Timespan () Desktop Accessibility

() Snapshot Best practices
SEO

Progressive Web App

Plugins
[J Publisher Ads
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Grafana

Server side monitoring

Cloud platforms like Azure provide monitoring solutions

Also available in Google Cloud, Amazon AWS, Alibaba Cloud...
In the case of Azure: Azure Monitor

We can also set up our own monitoring solution
Typical software: Prometheus and Grafana

Guide:
https://qithub.com/Arquisoft/wichat 0/blob/master/gatewayservice/README.md



https://azure.microsoft.com/es-es/products/monitor
https://github.com/Arquisoft/wichat_0/blob/master/gatewayservice/README.md
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Server side monitoring

We use a library to extract metrics from gatewayservice

npm install prom-client express-prom-bundle

const metricsMiddleware:RequestHandler = promBundle({includeMethod: true});
app.use(metricsMiddleware) ;

If we launch the gatewayservice, in /metrics we can see raw data can be
used by Prometheus to store it and by Grafana to plot nice charts

We can choose which metrics to measure [doc]

School of Computer Science, University of Oviedo
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Grafana cannot use this data directly, we need

Prometheus

 Prometheus retrieves data exposed by a service (e.g. gateway) and stores
it in a time series database so it can be consumed by Grafana

* We configured a docker image [prom/prometheus] with a single file

global:
scrape_interval: 5s
sCcrape_configs:
- job_name: "example-nodejs-app”
ctatic_configs:

- targets: ["gatewayservice:8888" ]



https://prometheus.io/

I ———
Server side monitoring

* How to configure Grafana
« Grafana will use Prometheus as data source
* We also have a docker image for running it [grafana/grafana]
« We can configure datasource and dashboard (which charts to plot)

School of Computer Science, University of Oviedo
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Example of Real Grafana Dashboards

https://grafana.wikimedia.orq/



https://grafana.wikimedia.org/
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Links
Monitoring & Profiling

Get Started With Analyzing Runtime Performance

https://developers.google.com/web/tools/chrome-devtools/evaluate-performance/

How to Use the Timeline Tool
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance timeline-tool#profile-js

School of Computer Science, University of Oviedo
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