
Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Allocation

Jose E. Labra Gayo

EN
English

2024-25

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Allocation

Relationship between Software and its environment

Where does each component run?

Infrastructure?

Deployment?

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Allocation

Packaging, distribution and deployment

Software computation options

Execution environments

Continuous delivery and deployment pipeline

Software in production

Software in production patterns

Software in production testing

Logging & Monitoring

Incidents & post-mortem

Chaos engineering

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Packaging,

distribution and

deployment

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Packaging

Create an executable from source code

A typical package consists of:
Compiled code

Even for interpreted languages: Transpiled, obfuscated & minimized

Configuration files
Environment variables

Credentials, etc.

Libraries & dependencies

User manuals & docs

Installation scripts

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o The problem of shipping software

Most software is not standalone

Lots of dependencies

Libraries, shared libraries, operating system libraries, ...

Developer's environment ≠ Production environment

Test DB
Libs

Developer
OS

Production
DBLibs'

Production
OS

Ship

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Distribution channels

Physical distribution

CDs, DVDs, ...

Web based

Downloads, FTP, ...

Application markets

Linux packages

App stores:

AppStore,

Google Play,

Windows Store

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Deployment

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Deployment view

UML has deployment diagrams

Artifacts associated with computational nodes

2 types of nodes:

Device node

Execution environment node

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Software computing options

On-premises

Cloud computing

Edge computing

Fog computing

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o On premises computing

Software run in the building

Client's computers/data center

Advantages

More control on hardware environment

Upgrades, customization

Security

When it is well configured

Challenges

Requires hardware investment

Which hardware is required?

Return of inversion?

Maintenance costs

Also costs on licenses, space,...

Sys. admin. skills required

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Cloud computing

Computer resources on demand

Software as a service (SaaS)

Advantages
No initial investment
Less expensive
Affordable access to expensive hardware
No need for sys. admins. skills

Challenges
Security
Dependency on cloud providers
Varying costs (possible surprises)
Requires configuration skills

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Pets vs cattle metaphor

"Pet" server "Cattle" servers

More info: http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/

In the old way of doing things, we treat our servers like pets, for example Bob the mail server. If Bob goes down, it’s

all hands-on deck. The CEO can’t get his email and it’s the end of the world.

In the new way, servers are numbered, like cattle in a herd.

For example, www001 to www100. When one server goes down, it’s taken out back, shot, and replaced on the line.

Unique and indispensable
GUI driven
Hand crafted
Reserved
Scale-up
. . .

Disposable, one of the herd
API driven
Automated
On demand
Scale-out
. . .

http://cloudscaling.com/blog/cloud-computing/the-history-of-pets-vs-cattle/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Edge computing

Computing done at customer devices
Connected devices process data closer to where it is created

Example: IOTs, Connected cars, ...

Advantages
Faster response (real time)

Micro data storage
On-premises visualization
Independency (no network involved)

Challenges
Less computing power

No access to required data

Embedded systems development

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Fog computing

Computating at intermediate nodes

Local Area Network
Advantages

Local network

Control response

Challenges
Complexity

Security

Business
analytics/Intelligence

Fog node/server
Fog node/server

Application Application Application Application

Sensors

Slower

Faster

Processing speed
Response time

Cloud layer

Fog layer

Edge layer

Data centers
Big data processing
Data warehousing

Local network
Control response

Real time
Embedded systems

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Execution environments

Where will the software run?

Which dependencies does it have?

Operating systems

Shared libraries

Several options

Physical Hosts

Virtual machines

Containers

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Physical hosts

Lots of possibilities

Commodity computer

Super-computers

Server farms

End-user devices

Advantages
Control

Performance

Challenges
Reliability

Portability

The MareNostrum 4 supercomputer (2017)
Source: Wikipedia

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o System Virtual machines

Isolated emulation of a real machine

Virtual hardware emulator

Run multiple operating systems in a single machine

Examples: VMWare, Virtualbox, ...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Virtual machines

Running apps on VMs

Requires guest operating system + libraries

App A App B App C

Bins/
libs

Bins/
libs

Bins/
libs

Virtual Hardware/emulator

Infrastructure

VM

Guest
OS

Guest
OS

Guest
OS

Advantages
Portability

Isolation

Emulate whole machines

Challenges
Resource consumption

Startup times

Less performance than bare-metal

Can take a lot of space

Each VM requires its own guest OS

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Containers & docker

Operating system level virtualization

Multiple isolated servers run on a single server

The same OS kernel implements the guest servers

Requires full process isolation at OS kernel

Docker (started in 2011) supports containers

Several parts

Specification for container descriptions (images)

Platform that runs containers

Container registry (Docker-hub)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Docker high-level architecture

Client-server architecture

docker build

docker pull

docker run

Docker client
DOCKER_HOST (server)

dockerd (daemon)

containers images

Docker registry

Docker hub

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Docker images

Container image = read-only template with instructions to create a

running container

DSL language

Typically described in a Dockerfile

Layered architecture

An image is usually based on another image + some customization

Each instruction creates a layer in the image

Lower layers can be reused

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Docker containers

A runnable instance of an image

Containers are usually isolated

From other containers

From the host machine

It is possible to configure isolation

Data volumes, network, ...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Docker registry

A Database of container images

Docker Hub is a public registry (used by default)

It is possible to use private registries

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Docker client

docker command

Communicates with the docker daemon using the API

Typical commands: docker pull, docker run, ...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Docker daemon

The docker daemon (dockerd) listens to API requests manages

images and containers

It can also communicate with other daemons

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Docker example

Sequence diagram for hello-world example

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
1b930d010525: Pull complete
Digest: sha256:f9dfddf63636d84ef479d645ab5885156ae030f...
Status: Downloaded newer image for hello-world:latest

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Virtual machines vs Containers

App A App B App C

Bins/
libs

Bins/
libs

Bins/
libs

Docker

Host OS

Infrastructure

Container

App A App B App C

Bins/
libs

Bins/
libs

Bins/
libs

Virtual Hardware/emulator

Infrastructure

VM

Guest
OS

Guest
OS

Guest
OS

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Containers consequences

Advantages
Consistency & portability

Easy to deploy

Isolation

Performance

Less space than VMs

1000s of containers

Immutable arcchitecture

Declarative configuration

Infrastructure as code

Automation

Challenges
Orchestration

Persistence more complex

Graphical applications

Platform-dependent (Linux)

App A App B App C

Bins/
libs

Bins/
libs

Bins/
libs

Docker

Host OS

Infrastructure

Container

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

State 3

Mutable vs Immutable infrastructure

Mutable infrastructure

Base
image

State 1

State 2

Config
Mgmt

Config
scripts

Package
repository

Config
Mgmt

Config
scripts

Package
repository Base

image
State 1

Base
image

State 2

Base
image

State 3

Immutable infrastructure

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Container management

Docker-compose = tool to define and run multi-container apps

YAML configuration file (docker-compose.yml)

With a single command, create and start all the services from a

multi-container configuration

Docker-compose usually works in a single host

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Automatically manage clusters of containers
Typical features:

Load balancing, Container lifecycles, provisioning...

Kubernetes
Initially developed by Google, donated to CNCF

Framework for distributed systems

Clusters consists of pods, deployments and services

Available in most cloud providers

Docker swarm
Developed by Docker

It can be considered a "mode" of running docker

Container orchestration

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Deployment

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Deployment pipeline

Automated implementation of an application’s build, deploy, test and

release process

Goals

Create runtime environments on demand

Fast, reliable, repeatable and predictable outcomes

Consistent environments in staging and production

Establish fast feedback loops to react upon

Make release days riskless, almost boring

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Deployment pipeline

Version
control

Build
manager

Analyze

Compile

Unit test

Package

Publish

Deploy trial

Acceptance test

Deploy real

Artifacts

Config
Mgmt.

use

deploy

Build
logs

log
commit

notify run

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Manual deployment

Vicious circle of deployment size and risk

Longer delay
between

deployments

More changes
in each

deployment

Higher risk
of bugs and
downtime

Longer review
processes

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Continuous deployment

"If it hurts do it more often"

In the limit: "Do everything continuously"

Run the full pipeline in every commit

Final stage: deployment in production
Possibilities

Confirmation by some human before going to production

Automatic deployment to production

Deployment to production marked by some tags

Trade-off
Cost of moving slower vs cost of error in deployment

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Continuous deployment

Patterns
Infrastructure as code

Keep everything in Version Control
Code

Configuration

Data

Align development and operations (DevOps)

Tools:
Ansible, Chef, Puppet,…

Best practices: 12 factors (next slide)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 12 factor https://12factor.net/

I. Codebase One codebase tracked in revision control, many deploys

II. Dependencies Explicitly declare and isolate dependencies

III. Config Store config in the environment

IV. Backing services Treat backing services as attached resources

V. Build, release, run Strictly separate build and run stages

VI. Processes Execute the app as one or more stateless processes

VII. Port binding Export services via port binding

VIII. Concurrency Scale out via the process model

IX. Disposability Maximize robustness with fast startup and graceful shutdown

X. Dev/prod parity Keep development, staging, and production as similar as possible

XI. Logs Treat logs as event streams

XII. Admin processes Run admin/management tasks as one-off processes

https://12factor.net/
https://12factor.net/codebase
https://12factor.net/dependencies
https://12factor.net/config
https://12factor.net/backing-services
https://12factor.net/build-release-run
https://12factor.net/processes
https://12factor.net/port-binding
https://12factor.net/concurrency
https://12factor.net/disposability
https://12factor.net/dev-prod-parity
https://12factor.net/logs
https://12factor.net/admin-processes

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Software in production

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Quality attributes in production

Configurability
Customize system without re-compiling it

Observability
Possibility to monitor the internal state of a system

Availability
Probability that a system is working at time t

Stability
Produce availability despite faults and errors

Reliability
Probability that a system produces correct outputs over some time t

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Configurability

Lots of configurable properties

Hostnames, port numbers, filesystem locations, ID numbers,

usernames, passwords, etc.

Config files = interface between developers and operators

Should be human-readable and machine processable

Examples: XML, JSON, YAML, ...

Can contain sensitive information

Separated from source code

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Logging

Logging is ubiquitous and easy to generate

White-box technology (integrated in source code)
They show activity and can easily persist

Human-readable

Log locations

Separate logs from source code

Logging levels

Find a good balance for logging between too noisy/silent

Anything marked as "ERROR" or "SEVERE" should require action

Remember: disable debug logs in production

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Monitoring

Monitoring: Observe the behaviour at runtime while software is

running

Time-series database systems

Time-series visualizations and dashboards

Prometheus, Graphite, Grafana, Datadog, Nagios, ...

Health checks

Profiling: Measure performance of a software while it is running

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Data in production

High availability and data replication

Ensure backup and restore

Database schemas in control version

Change requests

Data migration

Data purging

Sensible data in production

Inaccessible to developers

Encrypted

. . .

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o System problems

Fault:

Incorrect internal state (not necessarily observable)

Initiated by some defect or injection

Error:

Observable incorrect operation

Failure:

Loss of availability. System unresponsive

Chain reactions

Fault Error Failure

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Law of large systems

Large systems exist in a state of continuous partial failure

Corollary:

"Everything is working" is the anomaly

Important:

Don't propagate faults

Source: "Airplane" film
https://www.imdb.com/title/tt0080339/

https://www.imdb.com/title/tt0080339/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o In-production patterns

Load balancing

Timeouts

Circuit breakers

Bulkheads

Steady state

Fail fast

Handshaking

Test harnesses

Decoupling middleware

Create backpressure

Governor

Some libraries: https://resilience4j.readme.io/

https://resilience4j.readme.io/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Load balancing

Distribute requests across a pool of instances

Goal:

Serve all requests correctly in shortest feasible time

Decisions to take:

Load balancing algorithms

What health checks to do on instances

What to do when no pool members are available

Hardware/Software load balancers

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Timeouts

Add a time limiter to other services requests

Provide fault isolation

A problem in some other service does not have to become your problem

Timeouts usually followed by retries

It may make things worse
The situation may not recover automatically

The consumer waits more time

Sometimes, just failing is better

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Circuit breaker

Inspired by electrical fuses

CLOSED
(pass through)

OPEN
(don't bother)

Too many
errors

HALF-OPEN
(give it a try)

Every x
minutes

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

C

Bulkheads

"Contain damage" (save part of the ship)

If a component breaks, the system still works

Example: replicate instances in the cloud

A B

C

A B

C1 C2

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Steady state

"Nothing is infinite"

Keep system resources constant

Avoid human intervention for cleanup

Examples:

Data purging

Log files

In-memory caching

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Fail fast

Don't make consumers wait for a failure response

Reserve resources before starting work

Don't do useless work

Verify integration points early

Check all resources are available before start

Basic input validation

Shed load

Refuse new requests when load is too high

"Check ingredients before cooking"

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Let it crash

"Crash components to save systems"

Inspired by Erlang's error handling
If a component can't do what it has to do, let it crash

Let some other component do the recovery

Do not program defensively

Conditions
Create boundaries

A component crashes in isolation

Fast replacement

Supervision

Reintegration

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Handshaking

"Agree before doing"

Cooperative demand control

Both clients and servers agree

The server can reject incoming work

Services provide "health check" query

Load balancers check health before directing a request to some instance

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Create backpressure

producer server

requests

Backpressure = resistance opposing desired flow of data

Input is coming faster than we can output

Create safety by slowing down producers

Strategies

Control the producer (slow down producers)

Buffer (accumulate incoming data temporarily)

Unbounded buffers can be very dangerous

Drop

Not always acceptable to lose data

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Governor

Create governors to slow the rate of actions

When automation goes wrong, it can do bad things very quickly

Avoid force multiplier

Slow things down to allow human intervention

Apply resistance in the unsafe direction
Examples: shutdowns, deleting instances, ...

Consider a response curve

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Test harnesses

"Be evil when testing"

Create test harnesses that check most failure modes

Emulate out-of-spec failures

Stress the caller

Produce slow responses, no responses, garbage responses

Shared harnesses can be reused

Example: killer services

Related with Chaos engineering

[See later]

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Chaos engineering

Started by Netflix in 2010 (Chaos Monkey)

Test distributed systems

Break things on purpose

Failure injection testing

Ensure that one instance failure doesn't affect the system

Antifragility and resilience

https://github.com/Netflix/chaosmonkey

https://github.com/Netflix/chaosmonkey

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o In-production antipatterns

Integration points

Chain reactions

Cascading failures

Users

Blocked threads

Self-denial attacks

Scaling effects

Unbalanced capacities

Dogpile

Force multiplier

Slow responses

Unbounded result sets

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Testing in production

Progressive delivery
Reduce blast radius of new deployments

Enable experimentation

Some techniques
Canary releases

Feature toggles

A/B testing and multi-armed bandits

Blast radius of a deployment:
Who is impacted? What functionality? How many locations? ...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Canary release

Introduce new releases by slowly rolling out the change to small

subset of users

Infrastructure driven (router/load balancers)

Blue-Green deployment

https://martinfowler.com/bliki/CanaryRelease.html

Router/
Load

balancer

Old release

New release

Most users

(95%)

Some users

(5%)

https://martinfowler.com/bliki/CanaryRelease.html

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Feature toggles

Also known as feature flags, feature bits

Modify system behaviour without changing code

Decouple deployment from release

https://martinfowler.com/articles/feature-toggles.html

Router/
Load

balancer

Most users

(95%)

Some users

(5%)

https://martinfowler.com/articles/feature-toggles.html

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Types of tests

A/B testing:

Also known as split testing, bucket testing

Controlled experiment to test some hypothesis

Divide users in groups

Problem: Bad alternatives shown to groups of users during experiment

Multi-armed bandits

Dynamic traffic allocation

Bad alternatives get less users during time

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Load & stress testing

Load testing

Test performance under load

Example: simulate multiple users accessing concurrently

Stress testing

Load raised beyond normal usage patterns to test system's response

Check upper bounds

What happens when limit is reached

Several tools

JMeter, Gatling

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Incidents & post-mortem

Resolve and review incident

Ensure team view it as blameless

Create post-mortem report

Incident details

Root Cause Analysis

Timeline and actions taken to resolve it

Identify preventive measures

https://landing.google.com/sre/sre-book/chapters/postmortem-culture/

https://landing.google.com/sre/sre-book/chapters/postmortem-culture/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

End of presentation

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Free online

	Sección predeterminada
	Slide 1: Allocation
	Slide 2: Allocation
	Slide 3: Allocation
	Slide 4: Packaging, distribution and deployment
	Slide 5: Packaging
	Slide 6: The problem of shipping software
	Slide 7: Distribution channels
	Slide 8: Deployment
	Slide 9: Deployment view
	Slide 10: Software computing options
	Slide 11: On premises computing
	Slide 12: Cloud computing
	Slide 13: Pets vs cattle metaphor
	Slide 14: Edge computing
	Slide 15: Fog computing
	Slide 16: Execution environments
	Slide 17: Physical hosts
	Slide 18: System Virtual machines
	Slide 19: Virtual machines
	Slide 20: Containers & docker
	Slide 21: Docker high-level architecture
	Slide 22: Docker images
	Slide 23: Docker containers
	Slide 24: Docker registry
	Slide 25: Docker client
	Slide 26: Docker daemon
	Slide 27: Docker example
	Slide 28: Virtual machines vs Containers
	Slide 29: Containers consequences
	Slide 30: Mutable vs Immutable infrastructure
	Slide 31: Container management
	Slide 32: Container orchestration
	Slide 33: Deployment
	Slide 34: Deployment pipeline
	Slide 35: Deployment pipeline
	Slide 36: Manual deployment
	Slide 37: Continuous deployment
	Slide 38: Continuous deployment
	Slide 39: 12 factor https://12factor.net/
	Slide 40: Software in production
	Slide 41: Quality attributes in production
	Slide 42: Configurability
	Slide 43: Logging
	Slide 44: Monitoring
	Slide 45: Data in production
	Slide 46: System problems
	Slide 47: Law of large systems
	Slide 48: In-production patterns
	Slide 49: Load balancing
	Slide 50: Timeouts
	Slide 51: Circuit breaker
	Slide 52: Bulkheads
	Slide 53: Steady state
	Slide 54: Fail fast
	Slide 55: Let it crash
	Slide 56: Handshaking
	Slide 57: Create backpressure
	Slide 58: Governor
	Slide 59: Test harnesses
	Slide 60: Chaos engineering
	Slide 61: In-production antipatterns
	Slide 62: Testing in production
	Slide 63: Canary release
	Slide 64: Feature toggles
	Slide 65: Types of tests
	Slide 66: Load & stress testing
	Slide 67: Incidents & post-mortem
	Slide 68: End of presentation
	Slide 69

