
Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Distributed Systems

Scalable and big data systems

Jose E. Labra Gayo

EN
English

2024-25

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Distributed systems
Integration styles

Topologies: Hub & Spoke, Bus

Broker pattern

Peer-to-peer

SOA: WS-* vs REST

Microservices

Serverless

Network

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Integration styles
File transfer

Shared database

Remote procedure call

Messaging

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o File transfer

An application generates a data file that is consumed by

another

One of the most common solutions

Advantages

Independence between A and B

Low coupling

Easier debugging

By checking intermediate files

Application
A

exports

File

Application
B

imports

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o File transfer

Challenges

Both applications must agree a common file

format

It can increase coupling

Coordination

Once the file has been sent, the receiver could

modify it  2 files!

It may require manual adjustments

Application
A

exports

File

Application
B

imports

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Shared database

Applications store their data in a shared database

Advantage

Data are always available

Everyone has access to the same information

Consistency

Familiar format

SQL for everything

Application
C

Data
Base

Application
A

Application
B

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Shared database

Challenges
Database schema can evolve

It requires a common schema for all applications
That can cause problems/conflicts

External packages are needed (common database)

Performance and scalability
Database as a bottleneck

Synchronization
Distributed databases can be problematic

Scalability

NoSQL ?

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Shared database

Variants

Data warehousing: Database used for data analysis and reports

ETL: process based on 3 stages

Extraction: Get data from heterogeneous sources

Transform: Process data

Load: Store data in a shared database

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Remote Procedure Call (RPC)

An application calls a function from another application that could

be in another machine

Invocation can pass parameters

Obtains an answer

Lots of applications

RPC, RMI, CORBA, .Net Remoting, ...

Web services, ...

Application
A S

tu
b

call
procedure

S
k

el
et

o
n

Application
Banswer

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Remote Procedure Call (RPC)

Advantages

Encapsulation of implementation

Multiple interfaces for the same information

Different representations can be offered

Model familiar for developers

It is similar to invoke a method

Application
A S

tu
b

call
procedure

S
k

e
le

to
n

Application
Banswer

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Remote Procedure Call (RPC)

Challenges

False sense of simplicity

Remote procedure  procedure

8 fallacies of distributed computing

Synchronous procedure calls

Increase application coupling

The network is reliable
Latency is zero
Bandwidth is infinite
The network is secure
Topology doesn't change
There is one administrator
Transport cost is zero
The network is homogeneous

8 fallacies of distributed computing

Application
A S

tu
b

call
procedure

S
k

e
le

to
n

Application
Banswer

http://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://www.youtube.com/watch?v=UZxLYv5RFyI&t=54s

https://www.youtube.com/watch?v=UZxLYv5RFyI&t=54s

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Remote procedure call

More recent proposals: gRPC (https://grpc.io/)

Google proposal

High performance RPC framework

http/2 transport protocol

https://grpc.io/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Messaging

Multiple independent applications communicate sending messages

through a channel

Asynchronous communication

Applications send messages a continue their execution

Application
C

Application
A

Application
B

Message channel

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Messaging

Advantages

Low coupling

Applications are independent

between each other

Asynchronous communication

Applications continue their

execution

Implementation encapsulation

The only thing exposed is the

type of messages

Application
C

Application
A

Application
B

Message channel

Challenges

Implementation complexity

Asynchronous communication

Data transfer

Adapt message formats

Different topologies

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Integration topologies
Hub & Spoke

Bus

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Hub & Spoke

Related with Broker pattern

Hub = Centralized message Broker

It is in charge of integration

Hub or Broker
Central integration

engine

Application 4Application 3

Application 2Application 1

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Bus

Each application contains its own integration machine

Publish/Subscribe style

Message Bus

Application 1

Application 3 Application 4

Application 2

Adapter and
Integration engine

Adapter and
Integration engine

Adapter and
Integration engine

Adapter and
Integration engine

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Bus

ESB - Enterprise Service Bus

Defines the messaging backbone

Some tasks

Protocol conversion

Data transformation

Routing

Offers an API to develop services

MOM (Message Oriented Middleware)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Broker

Intermediate node that manages communication between a client and

a server

Client ServerBrokerstub skeleton

Client ServerBrokerstub skeleton

bridge

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Broker

Elements

Broker

Manages communication

Client: Sends requests

Client Proxy: stub

Server: Returns answers

Server Proxy: skeleton

Bridge: Can connect brokers

Client ServerBrokerstub skeleton

bridge

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Broker

Advantages

Separation of concerns

Delegates low level communication

aspects to the broker

Separate maintenance

Reusability

Servers are independent from

clients

Portability

Broker = low level aspects

Interoperability

Using bridges

Challenges
Performance

Adds an indirection layer

Can increase coupling between

components

Broker = single point of failure

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Broker

Applications

CORBA and distributed systems

Android uses a variation of Broker pattern

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Peer-to-Peer

Equal and autonomous nodes (peers) that communicate between them.

Network

Peer

Peer

Peer

Peer

Peer

Peer

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Peer-to-Peer

Elements

Computational nodes: peers

They contain their own state and control thread

Network protocol

Constraints

There is no main node

All peers are equal

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Peer-to-Peer

Advantages

Decentralized information and

control

Fault tolerance

There is no single point of failure

A failure in one peer does not

compromise the whole system

Challenges

Keeping the state of the system

Complexity of the protocol

Bandwidth Limitations

Network and protocol latency

Security

Detect malicious peers

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Peer-to-Peer

Popular applications

Napster, BitTorrent, Gnutella, ...

This architecture style is not only to share files

e-Commerce (B2B)

Collaborative systems

Sensor networks

Blockchain

...

Variants

Super-peers

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Service Oriented Architectures
SOA

WS-*

REST

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o SOA

SOA = Service Oriented Architecture

Services are defined by an interface

Internet

Service 2

Interface

Service 3

Interface

Service 1

Interface

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o SOA

Elements

Provider: Provides service

Consumer: Does requests to the service

Messages: Exchanged information

Contract: Description of the functionality provided by the service

Endpoint: Service location

Policy: Service level agreements

Security, performance, etc.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o SOA

Constraints

Service
Consumer

Service

Policy

Endpoint

Contracts

Messages

Adheres to

Binds to

Understands

Sends/receives

Governed by

Exposes

Implements

Sends /receives

Fuente: SOA Patterns, A. Rottem Gal Oz

Serves

Describes

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o SOA

Advantages

Independent of language and

platform

Interoperability

Use of standards

Low coupling

Decentralized

Reusability

Scalability

one-to-many vs one-to-one

Partial solution for legacy systems

Adding a web services layer

Challenges

Performance

E.g. real time systems

Overkill in very homogeneous

environments

Security

Risk of public exhibition of API to

external parties

DoS attacks

Service composition and

coordination

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o SOA

Variants:

WS-*

REST

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o WS-*

WS-* model = Set of specifications

SOAP, WSDL, UDDI, etc....

Proposed by W3C, OASIS, WS-I, etc.

Goal: Reference SOA implementation

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o WS-*

Web Services Architecture

Processes
Discovery, Aggregation, Choreography

Descriptions
Web Services Description Language (WSDL

Messages

SOAP extensions
Reliability, Correlation, Transactions

SOAP

B
a

se tech
n

o
lo

g
ies: X

M
L

, D
T

D
, S

ch
em

a

B
a

se tech
n

o
lo

g
ies: X

M
L

, D
T

D
, S

ch
em

a

Communications
HTTP, SMTP, FTP, JMS, IIOP, ...

S
E
C
U
R
I
T
Y

M
A
N
A
G
E
M
E
N
T

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o WS-*

HTTP

UDDI

SOAP request (XML)

SOAP answer (XML)
Web Service

Implementation

Web Service
Consumer

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o WS-*

SOAP

SOAP
SOAP

SOAP

Internet

Currency
converter

Billing

Users
Management

SOAP
XML

User
Application

Web Services ecosystems

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o WS-*

SOAP

Defines messages format and bindings with several protocols

Initially Simple Object Access Protocol

Evolution

Developed from XML-RPC

SOAP 1.0 (1999), 1.1 (2000), 1.2 (2007)

Initial development by Microsoft

Posterior adoption by IBM, Sun, etc.

Good Industrial adoption

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o WS-*

Envelope

Body

Header

Header Key

Header Key

Message format in SOAP

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o WS-*

Example of SOAP over HTTP

POST /Suma/Service1.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: longitud del mensaje
SOAPAction: "http://tempuri.org/suma"
<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
 <sum xmlns="http://tempuri.org/">
 <a>3
 2
 </sum>
 </soap:Body>
</soap:Envelope>

POST ?

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o WS-*

Challenges

Not all specifications were mature

Over-specification

Lack of implementations

RPC style abuse

Uniform interface

Sometimes, bad use of HTTP

architecture

Overload of GET/POST methods

Advantages

Specifications developed by

community

W3c, OASIS, etc.

Industrial adoption

Implementations

Integral view of web services

Numerous extensions

Security, orchestration,

choreography, etc.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o WS-*

Applications

Lots of applications have been using SOAP

Example: eBay (50mill. SOAP transactions/day)

But…some popular web services ceased to offer SOAP support

Examples: Amazon, Google, etc.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o REST

REST = REpresentational State Transfer
Architectural style

Source: Roy T Fielding PhD dissertation (2000)

Inspired by Web architecture (HTTP/1.1)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

REST
REST - Representational State Transfer

Diagram

Internet
HTTP

Resource 1

GET, PUT,
POST, DELETE

Resource 2

GET, PUT,
POST, DELETE

Application

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o REST

Set of constraints
Resources with uniform interface

Identified by URIs

Fixed set of actions: GET, PUT, POST, DELETE

Resource representations are returned

Stateless

REST = Architectural style

Some levels of adoption:

RESTful

REST-RPC hybrid

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o REST as a composed style

Layers

Client-Server

Stateless

Cached

Replicated server

Uniform interface

Resource identifiers (URIs)

Auto-descriptive messages (MIME types)

Links to other resources (HATEOAS)

Code on demand (optional)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o REST uniform interface

Fixed set of operations
GET, PUT, POST, DELETE

Method In databases Function Safe? Idempotent?

PUT Create/Update Create/update No Yes

POST Update Create/

Update children

No No

GET Retrieve Query resource info Yes Yes

DELETE Delete Delete resource No Yes

Safe = Does not modify server data
Idempotent = The effect of executing N-times is the same as executing it once

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o REST

Stateless client/server protocol

State handled by client

HATEOAS (Hypermedia As The Engine of Application State)

Representations return URIs to available options

Chaining of resource requests

Example: Student management
1.- Get list of students

GET http://example.org/student
Returns list of students with each student URI

2.- Get information about an specific student
GET http://example.org/student/id2324

3.- Update information of an specific student
PUT http://example.org/student/id2324

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o REST

Advantages

Client/Server

Separation of concerns

Low coupling

Uniform interface

Facilitates comprehension

Independent development

Scalability

Improves answer times

Less network load (cached)

Less bandwidth

Challenges

REST partially adopted

Just using JSON or XML

Web services without contract or

description

RPC style REST

Difficult to incorporate other

requirements

Security, transaction, composition,

etc.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o REST as a composed style

Layers
Client
Server

Stateless

REST

Replicated
Uniform
Interface

Cache Code on
demand

(optional)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Service based architecture

Pragmatic architectural style based on SOA

User interface

service

component

component

database

component

component

service

component

component

component

component

service

component

component

component

component

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Service based architecture

Elements

Services = independently deployed units

Usually composed of different components

User interface accesses services remotely (Internet)

Database shared by those services

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Service based architecture

Constraints

Each service is independently deployed

Services are usually coarse grained

User interface can be divided (different topologies)

Database is usually shared by each service

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Service based architecture

Advantages
Modularity of development

Services can be independently

developed

Technology diversity

Each service can be developed

using a different programming

language & technology

Time to market
Several frameworks

Availability

Reliability

Challenges
Scalability (database partitioning)

Evolution of services
Adaption to change is usually difficult

Services can be monoliths

Conway's law
Database team

User interface team

Programmers

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Microservices

Applications decomposed in microservices

Microservice = small, autonomous services that work together

Each microservice = independent building and deployment block

Highly uncoupled

Focus on a specific task

Manage their own data

http://martinfowler.com/articles/microservices.html

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Microservices

Diagram

Client

requests

Client

requests

Client

requests

API
Layer

service

module

module

database

service

module

module

database

service

module

module

database

service

module

module

database

service

module

module

database

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Microservices

Elements

A service + database form a deployed component

A service contains several modules and its own database

API layer (optional) offers a proxy or naming service

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Microservices

Constraints

Distributed

Bounded context:

Each service models a domain or workflow

Data isolation

Independency:

No mediator or orchestrator

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Features/advantages

Technology heterogeneity

Resilience

Scalability

Deployability

Organizational alignment

Decentralized data management

Optimizing for replaceability

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Technology heterogeneity

Each microservice can be implemented in its own
programming language and technology stack
Facilitates experimentation with new technologies

Flexibility

Friends
NodeJS

MongoDB

Pictures
Java

MySQL

Posts
Scala

GraphDB

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Resilience

If a component of a system fails and the failure doesn't scale, the system

can carry on working

In a monolithic system if a component fails, the whole system stops working

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Scalability

It is possible to scale on demand specific services

Monolithic systems require to scale the whole system

Not all components have the same needs

Microservices can be replicated as needed

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Scalability

Monolithic: all functionality in a single process

...scales replicating the monolith on multiple

services

Microservices: each element of functionality

into a separate service

... scales distributing these services and

replicating as needed

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Deployability

Deploy each service independently

Enables to do a change in a service and deploy it inmediately

Towards continuous deployment

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Organizational alignment

Inverse Conway Law maneuver
Evolve teams and organizational structure to promote the desired architecture

Create teams following the modular decomposition
Cross-functional teams

Service ownership: the team owning a service is responsible for making changes
and deploying it
"You build it, you run it" (Amazon)

Goal: increased autonomy and speed of delivery

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Traditional applications

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o With microservices

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Decentralized data management

Each team/service handles its own data

Monolith

module

module

Database

module

Monolith - single database

µService
1

Database

module

µService
2

Database

module

µService
3

Database

module

Microservices - application databases

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Optimizing for replaceability

Traditional systems usually contained old legacy systems which no

one wants to touch

With microservices

Less cost to replace a microservice with a better implementation

Or even delete it

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Challenges of microservices

Managing lots of microservices
Too much microservices = antipattern (nanoservices)

Ensure application consistency

Complexity of distributed system management

New challenges: latency, message format, load balance, fault tolerance, etc.

Testing & deployment
Operational complexity

Antipattern: distributed monolith

Microservices tangled that are not independently deployed

Structural decay (see next slide)

http://martinfowler.com/articles/microservice-trade-offs.html
https://www.ufried.com/blog/microservices_fallacy_1/

http://martinfowler.com/articles/microservice-trade-offs.html
https://www.ufried.com/blog/microservices_fallacy_1/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Microservices structural decay

Code dependencies between services

Too much shared libraries

Too much inter-service communication

Too many orchestration requests

Database coupling

Analyzing architecture (microservices)
https://www.youtube.com/watch?v=U7s7Hb6GZCU

https://www.youtube.com/watch?v=U7s7Hb6GZCU

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Microservices

patterns

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Microservices

Variants

Self-contained Systems (SCS) Architecture

Separation of functionality into many independent systems

https://scs-architecture.org/

Each SCS contains logic and data

https://scs-architecture.org/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Serverless

Also known as:
Function as a service (FaaS)

Backend as a service (BaaS)

Applications depend on third-party services

Developers don’t need to care about servers
Automatic scalability

Rich clients
Single Page Applications, Mobile apps

Examples:
AWS Lambda, Google Cloud Functions, Ms Azure Functions

https://en.wikipedia.org/wiki/Serverless_computing
https://martinfowler.com/articles/serverless.html

https://en.wikipedia.org/wiki/Serverless_computing
https://martinfowler.com/articles/serverless.html

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Serverless

Elements

Client that runs functions as a services

Cloud server which provides backend as a service

Constraints

No management of server hosts

Automatic scalability and provisioning based on load

Costs based on precise usage

WWW

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Serverless

Advantages

Automatic scalability

Implicit high availability

Performance not defined in terms of

host size/cost

Costs based on precise usage

Only pay for the compute you need

Time to market

Challenges

Vendor lock-in

Incompatibility between vendors

Security

Startup latency

Integration testing

Monitoring/debugging

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Big data and scalable systems

MapReduce

Lambda architecture

Kappa architecture

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MapReduce

Proposed by Google
Published in 2004

Internal implementation by Google

Goal: big amounts of data
Lots of computational nodes

Fault tolerance

Write-once, read-many

Style composed of:
Master-slave

Batch

Big

Data

Map Reduce

Result

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MapReduce

Elements

Master node: Controls execution

Node table

It manages replicated file system

Slave nodes

Execute mappers, reducers

Contain replicated data blocks

Big

Data

Map Reduce

Result

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MapReduce - Scheme

Inspired by functional programming

2 components: mapper and reducer

Data are divided for their processing

Each data is associated with a key

Transforms [(key1,value1)] to [(key2,value2)]

c1

Input:
[(key1,value1)]

v1

c1 v1

c1 v1

Output:
[(key2,value2)]

c2 v2

c2 v2

c2 v2

c2 v2

MapReduce

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Step 1: mapper

mapper: (Key1, Value1) → [(Key2,Value2)]

c1 vi1

c2 vi2

c3 vi3

k1 v1

k2 v2

k1 v3

k3 v4

k1 v5

k1 v6

k3 v7
mapper

mapper

mapper

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Step 2: Merge and sort

System merges and sorts intermediate results according to the keys

k1 v1

k2 v2

k1 v3

k3 v4

k1 v5

k1 v6

k3 v7

k1 v1 v3 v5 v6

k2 v2

k3 v4 v7

Merge
and
sort

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Step 3: Reducers

reducer: (Key2, [Value2]) → (Key2,Value2)

k1 v1 v3 v5 v6

k2 v2

k3 v4 v7 reducer

reducer

reducer vf1

vf2

vf3

k1

k2

k3

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MapReduce - general scheme

c1 vi1

c1 vi1

c1 vi1 mapper
reducer

reducer

reducer vf1

vf2

vf3

k1

k2

k3

mapper

mapper

k1 v1

k2 v2

k1 v3

k3 v4

k1 v5

k1 v6

k3 v7

k1 v1 v3 v5 v6

k2 v2

k3 v4 v7

Merge

and

sort

MapReduce

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MapReduce - count words

d1 a b

d2 a c a

d3 a c

4

1

2

a

b

c

a 1

b 1

a 1

c 1

a 1

a 1

c 1

mapper

mapper

mapper

reducer

reducer

reducera 1 1 1 1

b 1

c 1 1

Merge

and

sort

MapReduce

// return each work with 1
mapper(d,ps) {
for each p in ps:
emit (p, 1)

}

// sum the list of numbers of each word
reducer(p,ns) {
sum = 0
for each n in ns { sum += n; }
emit (p, sum)

}

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

MapReduce - execution environment

Execution environment is in charge of:

Planning: Each job is divided in tasks

Placement of data/code

Each node contains its data locally

Synchronization:

reduce tasks must wait map phase

Error and failure handling

High tolerance to computational nodes failures

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MapReduce - File system

Google developed a distributed file system - GFS

Hadoop created HDFS
Files are divided in chunks

2 node types:
Namenode (master), datanodes (data servers)

Datanodes store different chunks
Block replication

Namenode contains metadata
Where is each chunk

Direct communication between clients and datanodes

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MapReduce - File system

Namenode

file1: (B1 – N1 N2, B2 – N1 N2 N3)

file2: (B3 – N2 N3, B4 – N1 N2)

file3: (B5 – N1 N3)

B1 B1

B4

B4

B5

B5

B3 B3

Client1

Client2

N1 N2 N3

Datanodes

Slaves

B2

B2 B2

Master

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MapReduce

Advantages

Distributed computations

Split input data

Replicated repository

Fault tolerant

Hardware/software

heterogeneous

Large amount of data

Write-once. Read-many

Challenges

Dependency on master node

Non interactivity

Data conversion to MapReduce

Adapt input data

Convert output data

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MapReduce: Applications

Lots of applications:

Google, 2007, 20petabytes/day, around 100,000 mapreduce jobs/day

PageRank algorithm can be implemented as MapReduce

Success stories:

Automatic translation, similarity, sorting, ...

Other companies: last.fm, facebook, Yahoo!, twitter, etc.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MapReduce: Applications

Implementations
Google (internal)

Hadoop (open source)

…

Libraries
Hive (Hadoop): query language inspired by SQL

Pig (Hadoop): specific language that can define data flows

Cascading: API that can specify distributed data flows

Flume Java (Google)

Dryad (Microsoft)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Lambda architecture

Handle Big Data & real time analytics

Proposed by Nathan Marz, 2011

3 layers
Batch layer: precomputes all data with MapReduce

Generates partial aggregate views

Recomputes from all data

Speed layer: real time, small window of data
Generates fast real time views

Serving layer: handles queries
Merges the different views



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Lambda architecture

Combines Real time with batch processing

New data
stream

All data
HDFS

Precompute views
(MapReduce)

Increment
views

Batch
recompute

Batch layer

Process
stream

Realtime
increment

Speed layer

Serving layer

Partial

aggregate 1

Partial

aggregate N ...

Realtime view

Append only

Small window of the
data

Query

merge

Partial

aggregate 2



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Lambda architecture

Constraints

All data is stored in the batch layer

The batch layer precomputes views

The results of the speed layer may not be accurate

Serving layer combines precomputed views

The views can be simple DBs for querying



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Lambda architecture

Advantages

Scalability (Big data)

Real time

Decoupling

Fault tolerant

Keep all input data

Reprocessing

Challenges

Inherent complexity

Merging views can be inaccurate

Losing some events



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Lambda architecture

Applications

Spotify, Alibaba, …

Libraries

Apache Storm

Netflix Suro project



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Kappa architecture

Proposed by Jay Krepps (Apache Kafka), 2013

Handle Big data & Real time with logs

Simplifies Lambda architecture

Removes the batch layer

Based on a distributed ordered log

Replicated cluster

The log can be very large



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Data
source 1

Data
source 2

Kappa architecture

Diagram

Data
Source N

Stream
Processing App

queries

Append-only
immutable log

. . .

Streaming layer Serving layer



Raw topics

Curated topics

Service
Database

Data lakes

Streaming
analytics

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Kappa architecture

Constraints

The event log is append-only

The events in the log are immutable

Stream processing can request events at any position

To handle failures or doing recomputations



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Kappa architecture

Advantages

Scalable (big data)

Real time processing

Simpler than lambda

No batch layer

Challenges

Space requirements

Duplication of log and DB

Log compaction

Ordering of events

Delivery paradigms

At least once

At most once (it may be lost)

Exactly once



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Kappa architecture

Applications & libraries

Apache Kafka

Apache Samza

Spark Streaming

LinkedIn



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

End of presentation

	Sección predeterminada
	Slide 1: Distributed Systems Scalable and big data systems
	Slide 2: Distributed systems
	Slide 3: Integration styles
	Slide 4: File transfer
	Slide 5: File transfer
	Slide 6: Shared database
	Slide 7: Shared database
	Slide 8: Shared database
	Slide 9: Remote Procedure Call (RPC)
	Slide 10: Remote Procedure Call (RPC)
	Slide 11: Remote Procedure Call (RPC)
	Slide 12: Remote procedure call
	Slide 13: Messaging
	Slide 14: Messaging
	Slide 15: Integration topologies
	Slide 16: Hub & Spoke
	Slide 17: Bus
	Slide 18: Bus
	Slide 19: Broker
	Slide 20: Broker
	Slide 21: Broker
	Slide 22: Broker
	Slide 23: Peer-to-Peer
	Slide 24: Peer-to-Peer
	Slide 25: Peer-to-Peer
	Slide 26: Peer-to-Peer
	Slide 27: Service Oriented Architectures
	Slide 28: SOA
	Slide 29: SOA
	Slide 30: SOA
	Slide 31: SOA
	Slide 32: SOA
	Slide 33: WS-*
	Slide 34: WS-*
	Slide 35
	Slide 36: WS-*
	Slide 37: WS-*
	Slide 38: WS-*
	Slide 39: WS-*
	Slide 40: WS-*
	Slide 41: WS-*
	Slide 42: WS-*
	Slide 43: REST
	Slide 44: REST
	Slide 45: REST
	Slide 46: REST as a composed style
	Slide 47: REST uniform interface
	Slide 48: REST
	Slide 49: REST
	Slide 50: REST as a composed style
	Slide 51: Service based architecture
	Slide 52: Service based architecture
	Slide 53: Service based architecture
	Slide 54: Service based architecture
	Slide 55: Microservices
	Slide 56: Microservices
	Slide 57: Microservices
	Slide 58: Microservices
	Slide 59: Features/advantages
	Slide 60: Technology heterogeneity
	Slide 61: Resilience
	Slide 62: Scalability
	Slide 63: Scalability
	Slide 64: Deployability
	Slide 65: Organizational alignment
	Slide 66: Traditional applications
	Slide 67: With microservices
	Slide 68: Decentralized data management
	Slide 69: Optimizing for replaceability
	Slide 70: Challenges of microservices
	Slide 71: Microservices structural decay
	Slide 72: Microservices patterns
	Slide 73: Microservices
	Slide 74: Serverless
	Slide 75: Serverless
	Slide 76: Serverless
	Slide 77: Big data and scalable systems
	Slide 78: MapReduce
	Slide 79: MapReduce
	Slide 80: MapReduce - Scheme
	Slide 81: Step 1: mapper
	Slide 82: Step 2: Merge and sort
	Slide 83: Step 3: Reducers
	Slide 84: MapReduce - general scheme
	Slide 85: MapReduce - count words
	Slide 86: MapReduce - execution environment
	Slide 87: MapReduce - File system
	Slide 88: MapReduce - File system
	Slide 89: MapReduce
	Slide 90: MapReduce: Applications
	Slide 91: MapReduce: Applications
	Slide 92: Lambda architecture
	Slide 93: Lambda architecture
	Slide 94: Lambda architecture
	Slide 95: Lambda architecture
	Slide 96: Lambda architecture
	Slide 97: Kappa architecture
	Slide 98: Kappa architecture
	Slide 99: Kappa architecture
	Slide 100: Kappa architecture
	Slide 101: Kappa architecture
	Slide 102: End of presentation

