
Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Modularity

Jose E. Labra Gayo

EN
English

2024-25

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Modularity

Decomposing the project in modules at development time
Modules can be developed independently

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Modularity

Big Ball of Mud

Modularity definitions

Modularity recommendations
SOLID, Cohesion, Coupling, Connascence, Robustness, Demeter, Fluid interfaces

Modularity styles
Layers

Aspect Oriented decomposition

Domain based decomposition

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Big Ball of Mud

Big Ball of Mud

Described by Foote & Yoder, 1997

Elements

Lots of entities intertwined

Constraints

None

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Big Ball of Mud

Quality attributes (?)

Time-to-market

Quick start

It is possible to start without defining an architecture

Incremental piecemeal methodology

Solve problems on demand

Cost

Cheap solution for short-term projects

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Big Ball of Mud

Problems

High Maintenance costs

Low flexibility at some given point

At the beginning, it can be very flexible

After some time, a change can be dramatic

Inertia

When the system becomes a Big Ball of Mud it is very difficult to convert it

to another thing

A few prestigious developers know where to touch

Clean developers run away from these systems

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Big Ball of Mud

Some reasons
Throwaway code:

You need an immediate fix for a small problem, a quick prototype or proof
of concept

When it is good enough, you ship it

Piecemeal growth

Cut/Paste reuse
Bad code reproduced in lots of places

Anti-patterns and technical debt
Bad smells

Not following clean code/architecture

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Definitions of modules

Module

Piece of software the offers a set of responsibilities

It makes sense at building time (not at runtime)

Separates interface from body

Interface

Describes what is a module

How to use it  Contract

Body

How it is implemented

Interface

Body
(Implementation)

Module

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Modular decomposition

Relationship: is-part-of

Constraints

No cycles are allowed

Usually, a module can only have one parent

Several representations

System

Subsystem
A

Subsystem
B

Subsystem
B1

Subsystem
B2

Subsystem
A2

Subsystem
A1

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Modularity provides some quality attributes

Communication
Communicate the general aspect of the system

Maintainability
Facilitates changes and extensions

Localized functionality

Simplicity
A module only exposes an interface - less complexity

Reusability
Modules can be used in other contexts

Product lines

Independence
Modules can be developed by different teams

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Modularity challenges

Bad decomposition can augment complexity

Dependency management

Third parties modules can affect evolution

Team organization

Modules decomposition affects team organization

Decision: Develop vs buy

COTS/FOSS modules

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Modularity recommendations

SOLID design principles

Cohesion

Coupling

Connascence

Robustness: Postel’s law

Demeter's Law

Fluid interfaces

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o SOLID design principles

SOLID principles can be applied to clases and modules

SRP (Single Responsability Principle)

OCP (Open-Closed Principle)

LSP (Liskov Substitution Principle)

ISP (Interface Seggregation Principle)

DIP (Dependency Injection Principle)

Robert C. Martin

Source: Wikipedia

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o (S)ingle Responsibility

A module must have one responsibility

Responsibility = A reason to change

No more than one reason to change a module

Otherwise, responsibilities are mixed and coupling increases

http://www.stanleylondon.com/MerkurSEBlackCompass73318.jpg

vs

http://www.google.no/url?sa=i&rct=j&q=simple+black+compass&source=images&cd=&cad=rja&docid=J_ngjZgd28KFqM&tbnid=xHmynmLhSolfjM:&ved=0CAUQjRw&url=http://www.stanleylondon.com/WeemsCPlathCompasses.htm&ei=Xy51Uef2NqrV4gTS0YC4AQ&bvm=bv.45512109,d.bGE&psig=AFQjCNHmJBkO5wXKqmIC5BZJ-yYIihHgrA&ust=1366720477076178

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o (O)pen/Closed principle

Open for extension

The module must adapt to new changes

Change/adapt the behavior of a module

Closed for modification

Changes can be done without changing the module

Without modifying source code, binaries, etc

It should be easy to change the behaviour of a module without changing the
source code of that module

http://blog.8thlight.com/uncle-bob/2013/03/08/AnOpenAndClosedCase.html

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o (L)iskov Substitution

Subtypes must follow supertypes contract
B is a subtype of A when:

xA, if there is a property Q such that Q(x)

then yB, Q(y)

"Derived types must be completely substitutable by their base types"

Common mistakes:

Inherit and modify behaviour of base class

Add functionality to supertypes that subtypes don't follow

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o (I)nterface Segregation

Clients must not depend on unused methods

Better to have small and cohesive interfaces

Otherwise  non desired dependencies

If a module depends on non-used functionalities and these functionalities change,

it can be effected

ClientA

ClientB

InterfaceA

methodA1
methodA2

InterfaceB

methodB1
methodB2

Service

mehtodA1
methodA2
methodB1
methodB2

...

<<uses>>

<<uses>>

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o (D)ependency Inversion

Invert conventional dependencies
High-level modules should not depend on low-level modules

Both should depend on abstractions

Abstractions should not depend upon details.

Details should depend upon abstractions

Can be accomplished using dependency injection or several

patterns like plugin, service locator, etc.

http://www.objectmentor.com/resources/articles/dip.pdf
http://martinfowler.com/articles/dipInTheWild.html

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o (D)ependency Inversion

Lowers coupling

Facilitates unit testing
Substituting low level modules by test doubles

Related with:
Dependency injection and Inversion of Control

Frameworks: Spring, Guice, etc.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Cohesion

Cohesion = Degree to which the elements of a module work

together

It is recommended to have high cohesion

Each module must solve one functionality

Granularity

Modules must be released and reused independently

It should be possible to test each module separately

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Cohesion metric LCOM

LCOM (Lack of cohesion of methods), Chidamber and Kemerer

Measure degree of similarity of methods in a class

Several variants have been proposed LCOM 1-5

LCOM = ቊ
𝑃 − 𝑄 𝑠𝑖 𝑃 − 𝑄 > 0
0 𝑒𝑛 𝑐𝑎𝑠𝑜 𝑐𝑜𝑛𝑡𝑟𝑎𝑟𝑖𝑜

𝑃 = Number of methods without common attributes

𝑄 = Number of methods with common attributes

𝑚1()

𝑚2()

𝑚3()

a

b

c

𝑃 = 0, 𝑄 = 3

LCOM=0

𝑚1()

𝑚2()

𝑚3()

a

b

c

𝑃 = 3, 𝑄 = 0

LCOM=3

𝑚1()

𝑚2()

𝑚3()

a

b

c

𝑃 = 2, 𝑄 = 1

LCOM=1

attribute

method

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Cohesion principles

REP - Reuse/Release Equivalence Principle

CCP - Common Closure Principle

CRP - Common Reuse Principle

Robert C. Martin

Source: Wikipedia

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o REP

Reuse/Release Equivalence Principle

The granule of reuse is the granule of release

In order to reuse an element in practice, it is necessary to publish it in a

release system of some kind

Release version management: numbers/names

All related entities must be released together

Group entities for reuse

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o CCP

Common Closure Principle

Gather in a module entities that change for the same reasons and at

the same time

Entities that change together belong together

Goal: limit the dispersion of changes among release modules

Changes must affect the smallest number of released modules

Entities within a module must be cohesive

Group entities for maintenance

Note: Similar to SRP (Single Responsibility Principle), but for modules

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o CRP

Common Reuse Principle

Modules should only depend on entities they need

They shouldn't depend on things they don't need

Otherwise, a consumer may be affected by changes on entities

that is not using

Split entities in modules to avoid unneeded releases

Note: This principle is related with the ISP (Interface Segregation Principle)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

REP: Reuse/Release Equivalence Principle

CCP: Common Closure Principle

CRP: Common Reuse Principle

Tension diagram between component cohesion

REP

Group for

reuse

CCP

Group for

maintenance

CRP

Split to avoid

unneeded

releases

Too many

components

to change

Hard

to reuse

Too many

unneeded releases

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Coupling

Coupling = Degree of interdependence between software modules

Low coupling  Improves modifiability

Independent deployment of each module

Stability against changes in other modules

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Coupling principles

ADP - Acyclic dependencies principle

SDP - Stable dependencies principle

SAP - Stable abstractions principle

Robert C. Martin

Source: Wikipedia

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

ADP - Acyclic Dependencies Principle

The dependency structure for released modules must be a

Directed Acyclic Graph (DAG)

Avoid cycles

A cycle can make a single change very difficult

Lots of modules are affected

Problem to work-out the building order

NOTE: Cycles can be avoided using the DIP (Dependency Inversion Principle)

http://wiki.c2.com/?AcyclicDependenciesPrinciple

http://wiki.c2.com/?AcyclicDependenciesPrinciple

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o SDP Stable Dependencies Principle

The dependencies between components in a design should be in the

direction of stability

A component should only depend upon components that are more stable

than it is

Stability = fewer reasons to change

Component X is stable
Only depends on itself

Component Y is less stable
It has at least 3 reasons to change

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Stability metrics

Fan-in: incoming dependencies

Fan-out: outgoing dependencies

Instability 𝐼 =
𝐹𝑎𝑛−𝑜𝑢𝑡

𝐹𝑎𝑛−𝑖𝑛 + 𝐹𝑎𝑛−𝑜𝑢𝑡

Value between 0 (stable) and 1 (instable)

I(Cc)=
1

3+1
=

1

4

I(Ca)=
2

0+2
= 1

I(Cb)=
1

0+1
= 1

I(Cd)=
0

1+0
= 0

Stable Dependencies Principle states that the dependencies should be from higher instability to lower

http://wiki.c2.com/?StableDependenciesPrinciple

http://wiki.c2.com/?StableDependenciesPrinciple

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o SAP - Stable Abstractions Principle

A module should be as abstract as it is stable

Packages that are maximally stable should be maximally abstract.

Instable packages should be concrete

Abstract

Concrete

Stable Unstable

Zone of
pain

Zone of
uselessness

Abstract/stable = Interfaces with lots of dependant modules
Concrete/Unstable = Implementations without dependant modules
Zone of pain = DB schema
Zone of uselessness = interfaces without implementation

http://wiki.c2.com/?StableAbstractionsPrinciple

http://wiki.c2.com/?StableAbstractionsPrinciple

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Connascence

Things that are born and grow together

A change in one requires others to be modified to maintain the system

correct

Indicates problems to change - affects modifiability

A vocabulary to talk about coupling

Combines coupling and cohesion

Several types of connascence

Static = can be detected with static analysis

Dynamic = detected at runtime

More info: https://connascence.io/

https://connascence.io/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Static connascence

Of name
Several components must agree on the same name

Of type
Several components must agree on the same type

Of meaning
Several components must agree on a meaning

Example: magical constants

Of position
Several components must agree on a position

Example: arguments with same type

Of algorithm
Several components must agree on an algorithm

Example: Same hash function to encrypt/decrypt

public class Time {
int _hour; int _min; int _sec;

public Time(int hour, int min, int sec) {
_hour = hour ;
_minute = minute ;
_second = second ;

}

public String display() {
return _hour + ":" + _min + ":" + _sec ;

}
}

public class Client {
val noon = Time(12,0,0);
. . .
}

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Dynamic connascence

Of execution

The order of execution is important

Of timing

When the timing is important

Example: race conditions

Of values

Several values must change together

Of identity

Multiple components must reference the same entity

Email email = new Email();
email.setRecipient("foo@example.comp");
email.setSender("me@mydomain.com");
email.send();
email.setSubject("Hello World");

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 3 properties of connascence

Degree

Number of elements affected by connascence

Locality

Distance between those elements

Same function?, same class?, same package? ...

Strength

Easy with which it can refactored

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Types of connascence

Static
Can be detected

with static
analysis

Of name

Of Type

Of meaning

Of position

Of algorithm

Dynamic
Detected at

runtime

Of execution

Of timing

Of value

Of identity

Strength

-

+

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Reducing connascence

Refactor code according to the 3 axes

- Minimize locality (reduce separation)

- Minimize number of elements (degree)

- Minimize strength

Strength
Name, type, ...

Locality

Degree
Number of elements

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Robustness Principle, Postel's law

Postel’s law (1980), defined for TCP/IP

Be liberal in what you accept and conservative in what you send

Improve interoperability

Send well formed messages

Accept incorrect messages

Applications to API design

Process fields of interest ignoring the rest

Allows APIs to evolve later

https://en.wikipedia.org/wiki/Robustness_principle
https://devopedia.org/postel-s-law

Jon Postel

https://en.wikipedia.org/wiki/Robustness_principle
https://devopedia.org/postel-s-law

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Demeter's Law

Also known as Principle of less knowledge

Named after the Demeter System (1988)

Units should have limited knowledge about other units

Only units “closely” related to the current unit.

Each unit should only talk to its friends

"Don’t talk to strangers"

Symptoms of bad design

Using more than one dot...

a.b.method(...)

a.method(...)




Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Fluent APIs

Improve readability and usability of interfaces

Advantages

Can lead to domain specific languages

Auto-complete facilities by IDEs

Product p = new Product().setName("Pepe").setPrice(23);

class Product {
...
public Product setPrice(double price) {
this.price = price;
return this;
};

It does not contradict Demeter's Law because it acts on the same object

Trick: Methods that modify, return the same object

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Other modularity recommendations

Facilitate external configuration of a module

Create an external configuration module

Create a default implementation

GRASP Principles
General Responsibility Assignment Software Patterns

DRY (Don't repeat yourself)

Intent is declared in one place

YAGNI (You ain't gonna need it) and

KISS (Keep it simple stupid)

Do the Simplest Thing That Could Possibly Work”

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Modularity styles

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Layers

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Layers

Divide software modules in layers

Layers are ordered

Each layer exposes an interface that can be used by higher layers

Layer N

Layer N - 1

. . .

Layer 1

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Layers

Elements

Layer: set of functionalities exposed through an interface at a level N

Order relationship between layers

Layer N

Layer N - 1

. . .

Layer 1

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Layers

Constraints

Each software block belongs to one layer

There are at least 2 layers

A layer can be:

Client: consumes services from below layers

Server: provides services to upper layers

2 variants:

Strict: Layer N uses only functionality from layer N-1

Lax: Layer N uses functionalities from layers N - 1 a 1

No cycles

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Layers

Example

Presentation

Business

Persistence

Database

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Layers

Layers ≠ Modules

A layer can be a module...

...but modules can be decomposed in other modules (layers can't)

Dividing a layer, it is possible to obtain modules

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Layers

Layer: conceptual separation Tier: physical separation

Presentation

Persistence

Business

3-Layers

External
Applications

Legacy
systems

Database

Business
logic

Firewall

Thin
client

RIA

3-tiers

Presentation Business Data

Layers ≠ Tiers

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Layers

Advantages

Separates different abstraction levels

Loose coupling: independent evolution of each layer

It is possible to offer different implementations of a layer that keep the

same interface

Reusability

Changes in a layer affects only to the layer that is above or below it.

It is possible to create standard interfaces as libraries or application

frameworks

Testability

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Layers

Challenges

It is not always possible to apply it

We don't always have different abstraction levels

Performance

Access through layers can slow the system

Shortcuts

Sometimes, it may be necessary to skip some layers

It can lend to monolithic applications

Issues in terms of deployment, reliability, scalability

Sinkhole antipattern

Requests flow through layers without processing

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Layers

Example: Android

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Layers

Variants:

Virtual machines, APIs

3-layers, N-layers

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Virtual machines

Virtual machine = Opaque layer

Hides a specific OS implementation

One can only get Access through the public API

Program

Virtual Machine

API

Operating
System

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Virtual machines

Advantages

Portability

Simplifies software development

Higher-level programming

Facilitates emulation

Challenges

Performance

JIT techniques

Computational overload generated by the new layer

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Virtual machines

Applications

Programming languages

JVM: Java Virtual Machine

CLR .Net

Emulation software

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 3-layers (N-layers)

Technical partitioning

Each layer requires different technical capabilities

Presentation

Persistence

Business

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Aspect Oriented

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Aspect Oriented

Aspects:

Modules that implement crosscutting features

Presentation

Data

Business

S
ec

u
ri

ty

M
o

n
it

o
ri

za
ti

o
n

L
o

g
g

in
g

Aspects

In
te

rn
ti

o
n

a
li

za
ti

o
n

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Aspect Oriented

Elements:

Crosscutting concern

Functionality that is required in several places of an application

Examples: logging, monitoring, i18n, security,...

Generate tangling code

Aspect. Captures a crosscutting-concern in a module

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Aspect Oriented

Example: Book flight seats
Several methods to do the booking:

Book a seat

Book a row

Book two consecutive seats

...

En each method:
Check permission (security)

Concurrence (block seats)

Transactions (do the whole operation in one step)

Create a log of the operation

...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Aspect Oriented

Traditional solution
class Plane {
void bookSeat(int row, int number) {
// ... Log book petition
// ... check authorization
// ... check free seat
// ... block seat
// ... start transition
// ... log start of operation
// ... Do booking
// ... Log end of operation
// ... Execute transaction or rollback
// ... Unblock
}
...
public void bookRow(int row) {
// ... More or less the same!!!!
...

Concurrence

Logging
Security

Transaction

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Aspect Oriented

Structure Core
Application

Logic

Crosscutting
concern

Crosscutting
concern

Crosscutting
concern
(aspect)

Aspect
compiler

(weaving)

Final
application

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Aspect Oriented

Definitions

Join point: Point where an aspect

can be inserted

Aspect:

Contains:

Advice: defines the job of the aspect

Pointcut: where the aspect will be

introduced

It can match one or more join points

Pointcut

Running
Program

Join points

Advice

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Aspect Oriented

Aspect example in @Aspectj

@Aspect
public class Security {

@Pointcut("execution(* org.example.Flight.book*(..))")
public void safeAccess() {}

@Before("safeAccess()")
public void authenticate(JoinPoint joinPoint) {
// Does the authentication

}

}

Methods book*

It is executed before
to invoke those
methods

It can Access to
information of the
joinPoint

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Aspect Oriented

Constraints:

An aspect can affect one or more traditional modules

An aspect captures all the definitions of a crosscutting-

concern

The aspect must be inserted in the code

Tools for automatic introduction

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Aspect Oriented

Advantages

Simpler design

Basic application is clean of crosscutting concerns

Facilitates system modifiability and maintenance

Crosscutting concerns are localized in a single module

Reuse

Crosscutting concerns can be reused in other systems

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Aspect Oriented

Challenges

External tools are needed

Aspects compiler. Example: AspectJ

Other tools: Spring, JBoss

Debugging is more complex

A bug in one aspect module can have unknown consequences in

other modules

Program flow is more complex

Team development needs new skills

Not every developer knows aspect oriented programming

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Aspect Oriented

Applications

AspectJ = Java extension with AOP

Guice = Dependency injection Framework

Spring = Enterprise framework with dependency injection and AOP

Variants

DCI (Data-Context-Interaction): It is centered in the identification of

roles from use cases

Apache Polygene

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Domain based
Domain driven design

Hexagonal architecture

Data centered

Naked Objects

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Technical vs domain partitioning

Technical partitioning

Organize system modules

by technical capabilities

Domain partitioning

Organize modules by domain

Presentation

Persistence

Business

Database Database

Catalog
checkout

Update
inventory

Ship to
customer

Reporting

Analytics

Update
accounts

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Data model vs domain model

Data models
Physical:

Data representation
Tables, columns, keys, ...

Logical:

Data structure
Entities and relationships

Domain models

Conceptual model of some
domain

Vocabulary and context

Entities, relationships

Behaviour

Business rules

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Domain based

Centered on the domain and the business logic

Goal: Anticipate and handle changes in domain

Collaboration between developers and domain experts

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Domain based

Elements

Domain model: formed by:

Context

Entities

Relationships

Application

Manipulates domain elements

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Domain based

Constraints

Domain model is a clearly identified module separated from other

modules

Domain centered application

Application must adapt to domain model changes

No topological constraints

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Domain based

Advantages:

Facilitates team communication

Ubiquitous language

Reflects domain structure

Address domain changes

Share and reuse models

Reinforce data quality and consistency

Facilitates system testing

It is possible to create testing doubles with fake domain data

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Domain based

Challenges:

Collaboration with domain experts

Stalled analysis phase

It is necessary to establish context boundaries

Technological dependency

Avoid domain models that depend on some specific persistence

technologies

Synchronization

Synchronize system with domain changes

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Domain based

Variants

DDD - Domain driven design

Hexagonal style

Data centered

N-Layered Domain Driven Design

Naked Objects

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o DDD - Domain Driven Design

General approach to software development

Proposed by Eric Evans (2004)

Connect the implementation to an evolving domain

Collaboration between technical and domain experts

Ubiquitous language
Common vocabulary shared by the experts and the development team

http://ddd.fed.wiki.org/view/welcome-visitors/view/domain-driven-design

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o DDD - Domain Driven Design

Elements
Bounded context

Specifies the boundaries of the domain

Entities
An object with an identity

Value objects
Contain attributes but no identity

Aggregates
Collection of objects bound together by some root entity

Repositories
Storage service

Factories
Creates objects

Services
External operations

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o DDD - Domain Driven Design

Constraints

Entities inside aggregates are only accessible through the root entity

Repositories handle storage

Value objects are immutable

Usually contain only attributes

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o DDD - Domain driven design

Advantages

Code organization

Identification of the main parts

Maintenance/evolution of the system

Facilitates refactoring

It adapts to Behaviour Driven Development

Team communication

Problem space
Domain experts

Solution space
Development team

Ubiquitous language

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o DDD - Domain driven design

Challenges

Involve domain experts in development

It is not always possible

Apparent complexity

It adds some constraints to development

Useful for complex, non-trivial domains

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Hexagonal style

Other names:
ports and adapters, onion, clean architecture, etc.

Based on a clean Domain model
Infrastructures and frameworks are outside

Access through ports and adapters

Application

Adapter

Adapter

Adapter

Adapter

Adapter

Domain
model

http://alistair.cockburn.us/Hexagonal+architecture
http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

p
o

rt

p
o

rt

Adapter

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Hexagonal style

Example

Traditional application in layers

Incorporates new services

Testing DB

Application

Adapter UI

DB
MySQL

Adapter DB2

Adapter
REST

Adapter
printer

Adapter DB1

External
Application

Domain
ModelA

P
I

p
o

rt

d
a

ta
 p

o
rt

DB
MongoDB

Adapter
DB testing

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Hexagonal style

Elements

Domain model

Represents business logic: Entities and relationships

Plain Objects (POJOs: Plain Old Java Objects)

Ports

Communication interface

They can be with the: User, Database, etc.

Adapters

One adapter by each external element

Examples: REST, User, DB SQL, DB mock,...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Hexagonal style

Advantages

Understanding

Improves domain understanding

Timelessness

Less dependency on technologies and frameworks

Adaptability (time to market)

It is easier to adapt the application to changes in the domain

Testability

It is possible to substitute real databases by mock databases

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Hexagonal style

Challenges

It can be difficult to separate domain from the persistence system

Lots of frameworks combine both

Asymmetry of ports & adapters

Not all are equal

Active ports (user) vs passive ports (logger)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

EntitiesEntitiesEntities

Clean architecture

Similar to hexagonal architecture

Presented by Uncle Bob - Clean architecture book

Entities

Use cases

Controllers

External

interfaces

DB
UI

Web

Depends

Enterprise business rules

Application business rules

Interface adapters

Frameworks & drivers

Robert C. Martin

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Data centered

Simple domains based on data
CRUD (Create-Retrieve-Update-Delete) operations

Advantages:
Semi-automatic generation (scaffolding)

Rapid development (time-to-market)

Challenges
Evolution to more complex domains

Anemic domains
Classes that only contain getters/setters

Objects without behavior (delegated to other layers)
Can be like procedural programming

Anemic Models: https://www.link-intersystems.com/blog/2011/10/01/anemic-vs-rich-domain-models/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Naked Objects

Domain objects contain all business logic

User interface = Direct representation of domain objects

It can be automatically generated

Automatic generation of:

User interfaces

REST APIs

Domain
Object

Domain
Object

Domain
Object

persistence

services

REST

UI

remoting

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Naked Objects

Advantages

Adaptability to domain

Maintenance

Challenges

It may be difficult to adapt interface to special cases

Applications

Naked Objects (.Net), Apache Isis (Java)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

End of Presentation

	Sección predeterminada
	Slide 1: Modularity
	Slide 2: Modularity
	Slide 3: Modularity
	Slide 4: Big Ball of Mud
	Slide 5: Big Ball of Mud
	Slide 6: Big Ball of Mud
	Slide 7: Big Ball of Mud
	Slide 8: Definitions of modules
	Slide 9: Modular decomposition
	Slide 10: Modularity provides some quality attributes
	Slide 11: Modularity challenges

	ModularityRecommendations
	Slide 12: Modularity recommendations
	Slide 13: SOLID design principles
	Slide 14: (S)ingle Responsibility
	Slide 15: (O)pen/Closed principle
	Slide 16: (L)iskov Substitution
	Slide 17: (I)nterface Segregation
	Slide 18: (D)ependency Inversion
	Slide 19: (D)ependency Inversion
	Slide 20: Cohesion
	Slide 21: Cohesion metric LCOM
	Slide 22: Cohesion principles
	Slide 23: REP Reuse/Release Equivalence Principle
	Slide 24: CCP Common Closure Principle
	Slide 25: CRP Common Reuse Principle
	Slide 26: Tension diagram between component cohesion
	Slide 27: Coupling
	Slide 28: Coupling principles
	Slide 29: ADP - Acyclic Dependencies Principle
	Slide 30: SDP Stable Dependencies Principle
	Slide 31: Stability metrics
	Slide 32: SAP - Stable Abstractions Principle
	Slide 33: Connascence
	Slide 34: Static connascence
	Slide 35: Dynamic connascence
	Slide 36: 3 properties of connascence
	Slide 37: Types of connascence
	Slide 38: Reducing connascence
	Slide 39: Robustness Principle, Postel's law
	Slide 40: Demeter's Law
	Slide 41: Fluent APIs
	Slide 42: Other modularity recommendations

	Modularity styles
	Slide 43: Modularity styles
	Slide 44: Layers
	Slide 45: Layers
	Slide 46: Layers
	Slide 47: Layers
	Slide 48: Layers
	Slide 49: Layers
	Slide 50: Layers
	Slide 51: Layers
	Slide 52: Layers
	Slide 53: Layers
	Slide 54: Layers
	Slide 55: Virtual machines
	Slide 56: Virtual machines
	Slide 57: Virtual machines
	Slide 58: 3-layers (N-layers)
	Slide 59: Aspect Oriented
	Slide 60: Aspect Oriented
	Slide 61: Aspect Oriented
	Slide 62: Aspect Oriented
	Slide 63: Aspect Oriented
	Slide 64: Aspect Oriented
	Slide 65: Aspect Oriented
	Slide 66: Aspect Oriented
	Slide 67: Aspect Oriented
	Slide 68: Aspect Oriented
	Slide 69: Aspect Oriented
	Slide 70: Aspect Oriented
	Slide 71: Domain based
	Slide 72: Technical vs domain partitioning
	Slide 73: Data model vs domain model
	Slide 74: Domain based
	Slide 75: Domain based
	Slide 76: Domain based
	Slide 77: Domain based
	Slide 78: Domain based
	Slide 79: Domain based
	Slide 80: DDD - Domain Driven Design
	Slide 81: DDD - Domain Driven Design
	Slide 82: DDD - Domain Driven Design
	Slide 83: DDD - Domain driven design
	Slide 84: DDD - Domain driven design
	Slide 85: Hexagonal style
	Slide 86: Hexagonal style
	Slide 87: Hexagonal style
	Slide 88: Hexagonal style
	Slide 89: Hexagonal style
	Slide 90: Clean architecture
	Slide 91: Data centered
	Slide 92: Naked Objects
	Slide 93: Naked Objects
	Slide 94: End of Presentation

