
Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Achieving

software architecture

Jose E. Labra Gayo

EN
English

2024-25

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Achieving software architecture

Methodologies

ADD

Risk driven architecture

Making decisions

Architectural issues
Risks, unknowns, problems, gaps, drift

Architecture evaluation

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o How much architecture?

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑡𝑖𝑚𝑒 = ቐ
𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 +
𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 +

𝑅𝑒𝑤𝑜𝑟𝑘 𝑡𝑖𝑚𝑒

Sweet spot between too much architecture and too much rework

Architecting

Rework

Sweet spot

% time for architecture and risk reduction

% time added
to overall schedule

100

90

80

70

60

50

40

30

20

10

10 20 30 40 50

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Attribute driven design

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o ADD: Attribute-driven design

Defines a software architecture based on QAs

Recursive decomposition process
At each stage tactics and patterns are chosen to satisfy a set of QA

scenarios
Input

• QA requirements

• Constraints

• Architectural significant functional requirements

Output
• First levels of module decomposition

• Various views of the system as appropriate

• Set of elements with assigned functionalities and the interactions among the elements

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

7. Perform analysis of current design and review interation goal and

achievement of design purpose

ADD 3.0 Design

purpose

Primary

functional

requirements

Quality

attribute

scenarios

Constraints

Architectural

Principles/

Concerns

1. Review inputs

2. Stablish iteration goal by selecting drivers

3. Choose 1 or more elements of the system to refine

4. Choose 1 or more design concepts that satisfy the selected drivers

5. Instantiate architectural elements, allocate responsibilities and define

interfaces

6. Sketch views and record design decisions

(Refined) Software

architecture

Design

It
e

ra
te

 i
f

n
e

c
e

s
s
a
ry

F
ro

m
 p

re
v
io

u
s
 r

o
u

n
d

 o
f
it
e

ra
ti
o

n
s
 o

r
fr

o
m

e
x
is

ti
n
g
 s

y
s
te

m
 (

b
ro

w
n

fi
e
ld

 d
e

v
e

lo
p

m
e
n

t)

Leyend

Driver

Architecture design

Precedence step

Precedence

Artifact flow

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Risk based approach

Goal = Just enough software architecture

Avoid Big design up front

Integrate software architecture and agile methods

3. Evaluate risk reduction

2. Select and apply techniques

1. Identify and prioritize risks

More info: https://www.methodsandtools.com/archive/agilesoftwarearchitecture.php

It
e

ra
te

 i
f

n
e

c
e

s
s
a
ry

https://www.methodsandtools.com/archive/agilesoftwarearchitecture.php

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Architectural decisions

Significant decisions from the point of view of software architecture

Usually, decisions that affect

Quality attributes

Structure

Dependencies

Interfaces

Construction techniques

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Architecture decisions anti-patterns

Analysis paralysis

Decisions not taken
Fear of taking decisions

Advise: Evaluate decisions with team (and expect changes)
Wait until last responsible moment (but no longer)

Trapped in time (groundhog day)

People don't know why a decision has taken

It keeps getting discussed over and over again

Advise: Always add proper justification

Email-based decisions

People lose, forget or don't even know a decision

Advise: Architecture Decision Records

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Record design decisions

Every design decision is good enough but seldom optimal

It is necessary to record justification and risks affected

Things to record:
What evidence was provided to justify the decision?

Who did that?

What are the trade-offs?

What are the main assumptions?

Driver Design decisions and location Rationale and assumptions

QA-1 Introduce concurrency (tactic) in the
TimeServerConnector and FaultDetectionService

Concurrency should be introduced to be able to
receive and process several events
simultaneously

QA-2 Use of a messaging pattern through the introduction of
a message queue in the communications layer

Although the use of a message queue may seem
to go against the performance imposed by the
scenario, it hill be helpful to support QA-3

.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Architectural decision records

Templates: https://adr.github.io/

Basic structure:

Title
Short descriptive title

Status
Proposed, accepted, superseded

Context
What is forcing to make the decision

Include alternatives

Decision
Decision and corresponding justification

Consequences
Expected impact of the decision

https://adr.github.io/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Architectural issues

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Architectural issues

Risks

Unknowns

Problems

Technical debt

Gaps in understanding

Erosion

Contextual drift

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Risks

Risk = something bad that might happen but hasn't

happened yet

Risks should be identified and recorded

Risks can appear as part of QA scenarios

Risks can be mitigated or accepted

If possible, identify mitigation tasks

Risk = perceived probability of failure  perceived impact

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Risk assessment table

Assess risks in two dimensions:

Impact/severity of risk

Probability of risk occurring

Risk matrix 3x3:

Simplify values as: low (1), medium (2), high (3)

Low
(1)

Mediu
m (2)

High
(3)

Low (1) 1 2 3

Medium
(2)

2 4 6

High (3) 3 6 9

Probability

Im
p

a
ct

Area
Risk
Criteria

Customer
registration

Order
Fulfillment

Scalability 2 1

Availability 3 2

Performance 4 3

Security 6 1

Data integrity 9 1

Example of risk assessment table3x3 Risk matrix

Risk storming: recommended exercise to collaboratively evaluate risks

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Unknowns

Sometimes we don't have enough information to know if an architecture

satisfies the requirements

Under-specified requirements

Implicit assumptions

Changing requirements

...

Architecture evaluations can help turn unknown unknowns into known

unknowns

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Problems

Problems are bad things that have already passed

They arise when one makes design decisions that just doesn't work out the

desired way

They can also arise because the context changed

A decision that was a good idea but no longer makes sense

Problems can be fixed or accepted

Problems that are not fixed can lead to technical debt

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Debt accrued when knowingly or unknowingly wrong or non-optimal design decisions

are taken

If one pays the instalments the debt is repaid and doesn't create further problems

Otherwise, a penalty in the form of interest is applicable

If bill not paid for long time  total debt is so large that must declare bankruptcy

In software terms, it could mean the product is abandoned

Several types:

Code debt: Bad or inconsistent coding style

Design debt: Design smells

Test debt: Lack of tests, inadequate test coverage,...

Documentation debt: Outdated documentation, No documentation for important concerns

Technical debt

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Gaps in understanding

They arise when what stakeholders think about an architecture doesn't

match the design

In rapidly evolving architectures gaps can arise quickly and without warning

Gaps can be addressed though education

Presenting the architecture

Asking questions to stakeholders

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Architectural erosion (drift)

Gap between designed and as-built architecture

The implemented system almost never turns out the way the

architect imagined it

Without vigilance, architecture drifts from planned design a little bit

every day until implemented system bears little resemblance to the

plan

Architecturally evident code can mitigate drift

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Contextual drift

It happens any time business or context drivers change after a

design decision has been taken

Necessary to continually revisit requirements

Evolutionary architecture

Business/context
drivers

Decision

New Business/context
drivers

Is the decision
still valid?

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Architectures evaluation

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Architecture evaluation

ATAM (Architecture Trade-off Analysis Method)

Architecture evaluation method

Simplified version of ATAM:

- Present business drivers

- Present architecture

- Identify architecture approaches

- Generate quality attribute utility tree

- Analyse architectural approaches

- Present results

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Cost Benefit Analysis Method (CBAM)

1. Choose scenarios and architectural strategies

2. Assess quality attribute benefits

3. Quantify the benefits of each strategy

4. Quantify the costs and schedule implications

5. Calculate the desirability of each option

𝑉𝐹𝐶 𝑉𝑎𝑙𝑢𝑒 𝐹𝑜𝑟 𝐶𝑜𝑠𝑡 =
𝐵𝑒𝑛𝑒𝑓𝑖𝑡

𝐶𝑜𝑠𝑡
6. Make architectural design decisions

Business
Goals

Architecture
decisions

Performance

Security

Modifiability

. . .
Cost

More info: https://slideplayer.com/slide/12550708/

Benefit

https://slideplayer.com/slide/12550708/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

The end

	Sección predeterminada
	Slide 1: Achieving software architecture
	Slide 2: Achieving software architecture

	Methodologies
	Slide 3: How much architecture?
	Slide 4: Attribute driven design
	Slide 5: ADD: Attribute-driven design
	Slide 6: ADD 3.0
	Slide 7: Risk based approach
	Slide 8: Architectural decisions
	Slide 9: Architecture decisions anti-patterns
	Slide 10: Record design decisions
	Slide 11: Architectural decision records
	Slide 12: Architectural issues
	Slide 13: Architectural issues
	Slide 14: Risks
	Slide 15: Risk assessment table
	Slide 16: Unknowns
	Slide 17: Problems
	Slide 18: Technical debt
	Slide 19: Gaps in understanding
	Slide 20: Architectural erosion (drift)
	Slide 21: Contextual drift

	Architecture evaluation
	Slide 22: Architectures evaluation
	Slide 23: Architecture evaluation
	Slide 24: Cost Benefit Analysis Method (CBAM)
	Slide 25: The end

