
Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Communicating

Software Architecture

Jose E. Labra Gayo

EN
English

2024-25

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Contents

Communicating software architecture
Goal of documentation

Documentation stakeholders

Views

Documentation and agile projects

Guidelines

Documentation approaches
Kuchten 4+1 views

Views and beyond

C4 model

Arc42

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Comunicating Software architecture

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Architecture is more than code
The code doesn't tell the whole story

Questions the code doesn't answer
How the software fits into existing system landscape?

Why were the technologies chosen?

What's the overall structure of the system?

Where are the components deployed at runtime?

How do the components communicate?

How and where to add new functionality?

What common patterns and principles are used?

How the interfaces with other systems work?

How security/scalability/… has been achieved?

. . .

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Goal of documentation

Main goal: communicate the structure

Understand the big picture

Create a shared vision: team and stakeholders

Common vocabulary

Describe what the sofware is and how is being built

Focus for technical conversations about new features

Provide a map to navigate the source code

Justify design decisions

Help new developers that join the team

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Documentation requirements

Understandable by different stakeholders

Technical and non-technical stakeholders

Reflect the reality

Be careful of the model-code gap

Move fast and adapt to changes

Adapt to agile projects

Evolutionary architecture

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Rules for good documentation

Write documentation from reader's point of view
Find who will be the readers and their expectations

Avoid unnecessary repetition (DRY principle)

Avoid ambiguity
Explain the notation (or use a standard one)

For diagrams, use legends

Use a standard organization or template
Add TBD/To do when necessary

Organize for easy of reference/links

Record rationale

Keep documentation current

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Problem vs Solution space

Software architecture = path from problem to solution

Understand the problem

Design a solution

Rationale for the solutions proposed

Record different design alternatives

Problem
Space

Stakeholders
Context
Quality goals
Constraints
Principles
…

Solution
Space

Building blocks
Interfaces
Components
Patterns/styles
Tactics
…

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Views & viewpoints

Software architecture is a complex entity

It cannot be described in a single 1-dimension

It requires several views for different stakeholders

View = A representation of a system with regards to some concerns

Different views support different goals and uses

Viewpoint = A collection of patterns, templates and conventions for

constructing a view

Examples: structure, behaviour, deployment

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Documenting views

Introduction
Textual description of the view

Diagram(s)
Add descriptive title including structures depicted

Create a legend to explain meaning of symbols
Don't forget to explain the lines/arrows

List of elements and responsibilities
Give descriptive names

Define your terms (include a glossary)

Rationale

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Documenting views

Strive for Consistency and simplicity

Keep elements consistent

Colours, shapes, arrows,…

If you use a colour scheme, follow it consistently

Check names across views,…

Record possible inconsistencies

Avoid too many details

Remember Miller's law

Average person can keep 7 ( 2) elements in memory

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Tools for diagrams

Sketches

Drawing tools for diagrams

Text-based diagramming tools

Modeling tools

Reverse-engineering the model

Architecture description languages

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Sketches

Most people start with a sketch on paper or whiteboard

Great way to collaborate and exchange ideas

Usually intended for short lifespan

But sooner or later, they must be recorded

Simple approach: Photos

And later conversion to diagrams or models

Fuente: https://c4model.com/

https://c4model.com/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Drawing tools for Diagrams

Desktop

Microsoft Visio, Omnigraffle, SimpleDiagrams, …

Web-based:

draw.io, gliffy, LucidChart,…

Drawing tools of general-purpose tools:

Word, Powerpoint, Keynote,…

Front
EndUser Backend DB

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Text-based diagramming tools

Usually based on UML
WebSequenceDiagrams, yUML, nomnoml

PlantUML: http://plantuml.com/

@startuml
Agent -> Agent : init
Agent -> Manager : sendEmail()
Agent <-- Manager : reply X
Agent -> Manager : blabla(X)
User -> Manager : check(X)
User <-- Manager : ok
@enduml

PlantUML Online: https://www.planttext.com/

http://plantuml.com/
https://www.planttext.com/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Modeling tools

Allow to create a model of the software system

Visual representations are generated from model

Alternatives:

Sparx Enterprise Architect, Visual Paradigm, Archi, StarUML,

ArgoUML, Modelio,…

Usually support different notations

UML, SysML, BPMN, ArchiMate

Useful for up-front design

Good for refactoring & renaming components…

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Reverse-engineering the model

Some of the previous modelling tools support this

Static analysis tools:

Structure101, NDepend, Lattix, Sonargraph,…

Create the model based on existing code

Useful to visualize existing codebases

Problem:

Resulting diagrams tend to include too much details

Difficult to see the architecture

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Architecture Description Languages: ADLs

Formally define the architecture of a system
Create textual descriptions instead of diagrams

Formal specification

Describes the structure and behaviour

Mostly in academic environments
Not very popular in industrial settings

Some examples:
xArch/xADL (http://isr.uci.edu/projects/xarchuci/)

ACME (http://www.cs.cmu.edu/~able/)

AADL (http://www.aadl.info/)

http://isr.uci.edu/projects/xarchuci/
http://www.cs.cmu.edu/~able/
http://www.aadl.info/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Software architecture templates

Several possibilities

Kruchten 4+1 views

Views & beyond

C4 model

Arc42 templates

. . .

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Kruchten 4+1 views
Embraced as part of Rational Unified Process

5 concurrent views

1 Logical view: functionality of the system

2 Development view: modules, layers,...

3 Process view: execution units, concurrency,…

4 Physical view: Infrastructure & deployment topology

(+1) Scenarios view: selected use cases or scenarios

Logical
view

Process
view

Development
view

Deployment
view

Scenarios

Integrators
Performance
Scalability

End-user
Functionality

Programmers
Software management

System engineers
Topology
Communications

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Views and beyond

Select a set of viewpoints
According to stakeholder's needs

Define views according to those viewpoints
Add a "Beyond views" document

Overall architecture
Information about how views relate
. . .

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o C4 model (https://c4model.com/)

Describe

Context: System or enterprise context diagram

Container diagram: high level shape

Components diagram: zoom and decompose

Code: UML class diagrams, ER diagrams, …

Documentation guidebook
Context
Functional overview
Quality attributes
Constraints
Principles

Code
Data
Infrastructure architecture
Deployment
Development environment
Operation and support
Decision log

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Arc42 https://arc42.org/

Structure to document software systems

Goal: Clear, simple and effective

Templates available for several systems
Asciidoc

Word (docx)

Markdown

LaTeX

ReStructuredText

Confluence

. . .

https://arc42.org/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Arc42 overview

1.- Introduction and goals

2.- Constraints

3.- Context & scope

4.- Solution strategy

5.- Building block view

6.- Runtime view

7.- Deployment view

8.- Crosscutting concepts

9.- Architectural decisions

10.- Quality requirements

11.- Risks and technical debt

12.-Glossary

Picture source: https://commons.wikimedia.org/wiki/File:Ficherosclasicoscatalogo.JPG

Problem

Solution

https://commons.wikimedia.org/wiki/File:Ficherosclasicoscatalogo.JPG

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 1 - Introduction and goals

Short description of:
- Requirements
- Main quality goals
- Stakeholders

Picture source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 1 Introduction and goals

1.1 Requirements overview

Short description of functional requirements

Use-case tables

It can link to existing requirements documents

Full requirement documents are usually longer

Select architecturally significant requirements

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 1 Introduction and goals

1.2 Main quality goals

Enumerate the main quality goals

Quality goals:

Main quality attributes that the system needs to achieve

Format: A simple table can suffice

Example:
https://biking.michael-simons.eu/docs/index.html#_quality_goals

https://biking.michael-simons.eu/docs/index.html#_quality_goals

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o How to choose quality attributes?

Quality attribute workshops

Involve stakeholders to prioritize quality attributes

It may be helpful to distinguish

Runtime quality attributes

Performance, security, availability, usability,…

Non-runtime quality attributes

Modifiability, portability, reusability,testability

Business quality attributes

Cost, schedule, time-to-market, …

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o How to choose quality attributes?

ISO-25010 Software Quality Model
2 parts: Product quality, Quality in-use

Product

Quality

Functional

suitability

Performance

efficiency

Compati-

bility
Usability

Relia-
bility

Security
Maintaina-

bility

Porta-

bility

In-use

Effectiveness Efficiency Satisfaction
Freedom
from risk

Context

coverage

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

1 Introduction and goals

1.3 Stakeholders
Stakeholder: person who affects, is affected or can

contribute to the system and its architecture

Make explicit expectations and motivation

Format: table or map

Stakeholder Description Expectations,
motivations

.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 2 - Constraints

Anything that constrains teams in design and implementation
decisions

Sometimes at organization level

Decisions already taken

Format: a table with explanations
Can be divided in organizational, technical, etc.

Picture source: https://arc42.org/overview/

Constraint Explanation

.

https://arc42.org/overview/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 3 - Context and scope

Delimits the system from external partners

Neighbouring users and systems

Specifies the external interfaces

Business and technical perspective

Picture source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 3. Context and Scope

3.1 Business context

Specify all partners involved in the environment

Format: Diagram or table

Diagrams that show the system as a black box

Optional: Explanation of external interfaces

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

3 Context and scope

3.2 Technical context

Specify Technical interfaces that link the system with the

environment

Format: Diagram or table

Usually: UML deployment diagrams

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Business context vs technical context

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 4 - Solution strategy

Summary of fundamental decisions and strategies
Can include:

- Technology
- Top-level decomposition
- Approaches to achieve top quality goals
- Relevant organizational decisions.

Format: short text description
Keep explanations of key decisions short

Picture source: https://commons.wikimedia.org/wiki/File:Light_Bulb_or_Idea_Flat_Icon_Vector.svg

https://commons.wikimedia.org/wiki/File:Light_Bulb_or_Idea_Flat_Icon_Vector.svg

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

5 - Bulding block view

Static decomposition of system

Modules of the system

Hierarchy of white boxes containing black boxes

Format:

Start with overall overview diagram

Decompose into other diagrams

Usually: UML Component diagrams

Source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 6 - Runtime view

Source: https://arc42.org/overview/

Behavior of building blocks as scenarios
Important use cases or features
Interactions at critical external interfaces

Error and exception behavior.

Format:
Many notations

Natural language (list of steps)

UML sequence diagrams

Flowcharts

BPMN

…

https://arc42.org/overview/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 7 - Deployment view

Technical infrastructure with environments, computers,
processors, topologies.

Mapping of (software) building blocks to infrastructure
Format:

Usually: UML deployment diagrams
Add mapping tables

Source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 8 - Crosscutting concepts

Approaches relevant in multiple parts of system

Topics like:

Domain model

Architecture pattern and styles

Specific rules

Source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 9 Architectural decisions

Important, expensive, critical, large scale or risky architecture decisions
Include rationale for the decisions
Format:

List or table ordered by importance
Architecture decision record for important decisions

Source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 10 - Quality requirements

Quality requirements as scenarios

Quality tree to provide high-level overview

The most important quality goals should have been described in section 1

(quality goals)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 10. Quality requirements

10.1 Quality tree

A quality tree with quality scenarios as leafs

Include priorities for an overview

Sometimes, large number of quality requirements.

Format:

A mind map with quality categories as branches

Include links to scenarios of the following section

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 10. Quality requirements

10.2 Quality scenarios

Scenarios describe what should happen when a stimulus

arrives at the system.

2 types:

Usage: runtime reaction to a certain stimulus.

"The system reacts to a user’s request within 1 sec."

Change: modification of the system or its environment

"A new user type must be added"

Format: Tabular or free form text.

Source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 11 - Risks and technical debt

Known technical risks or technical debt

What potential problems exist?

What does the development team feel miserable about?

Format:

List or risks/technical debts

Include suggested measures to minimize, mitigate or avoid risks or

reduce technical debts.

Source: https://arc42.org/overview/

https://arc42.org/overview/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o 12 - Glossary

Important domain and technical terms

Terms used by stakeholders when discussing the system

Common vocabulary

Translation reference in multi-language environments

Format: table

Source: https://arc42.org/overview/

Term Definition

.

https://arc42.org/overview/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Architecturally evident coding style

Drop hints about architecture in the code

Allow readers to infer the design from the code

The code should reflect the architecture

Examples:

Components as packages

Modules in different repos/folders

Some tools that check/enforce architectural constraints

https://www.lattix.com/, https://structurizr.com/

https://www.lattix.com/
https://structurizr.com/

	Sección predeterminada
	Slide 1: Communicating Software Architecture
	Slide 2: Contents
	Slide 3: Comunicating Software architecture
	Slide 4: Architecture is more than code
	Slide 5: Goal of documentation
	Slide 6: Documentation requirements
	Slide 7: Rules for good documentation
	Slide 8: Problem vs Solution space
	Slide 9: Views & viewpoints
	Slide 10: Documenting views
	Slide 11: Documenting views
	Slide 12: Tools for diagrams
	Slide 13: Sketches
	Slide 14: Drawing tools for Diagrams
	Slide 15: Text-based diagramming tools
	Slide 16: Modeling tools
	Slide 17: Reverse-engineering the model
	Slide 18: Architecture Description Languages: ADLs

	Documentation_Arc42
	Slide 19: Software architecture templates
	Slide 20: Kruchten 4+1 views
	Slide 21: Views and beyond
	Slide 22: C4 model (https://c4model.com/)
	Slide 23: Arc42 https://arc42.org/
	Slide 24: Arc42 overview
	Slide 25: 1 - Introduction and goals
	Slide 26: 1 Introduction and goals 1.1 Requirements overview
	Slide 27: 1 Introduction and goals 1.2 Main quality goals
	Slide 28: How to choose quality attributes?
	Slide 29: How to choose quality attributes?
	Slide 30: 1 Introduction and goals 1.3 Stakeholders
	Slide 31: 2 - Constraints
	Slide 32: 3 - Context and scope
	Slide 33: 3. Context and Scope 3.1 Business context
	Slide 34: 3 Context and scope 3.2 Technical context
	Slide 35: Business context vs technical context
	Slide 36: 4 - Solution strategy
	Slide 37: 5 - Bulding block view
	Slide 38: 6 - Runtime view
	Slide 39: 7 - Deployment view
	Slide 40: 8 - Crosscutting concepts
	Slide 41: 9 Architectural decisions
	Slide 42: 10 - Quality requirements
	Slide 43: 10. Quality requirements 10.1 Quality tree
	Slide 44: 10. Quality requirements 10.2 Quality scenarios
	Slide 45: 11 - Risks and technical debt
	Slide 46: 12 - Glossary
	Slide 47: Architecturally evident coding style

