
Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Runtime/behaviour

Jose E. Labra Gayo

EN
English

2023-24

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Runtime behaviour

Also called: Components and connectors

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

1st part.

Basic and monolith styles

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Data flow
Batch

Pipes & Filters

Pipes & Filters with uniform interface

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Batch

Independent programs are executed sequentially

Data is passed from one program to the next

Note
Batch style = grandfather of software architectural styles

Stage

Write port

Stage

Stage

Connector
Stage

Read port

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Batch

Elements:

Independent executable programs

Constraints

Output of one stage is linked to input of the next

A program usually waits for the previous one to finish its execution

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Batch

Advantages

Low coupling between components

Re-configurability

Debugging

It is possible to debug each input

independently

Challenges

It does not offer interactive
interface

Requires external
intervention

No support for concurrency
Low throughput

High latency

Definitions:

 Throughput: rate at which something can be processed.

 Example: number of jobs/second

 Latency: time delay experienced by a process

 Example: 2 seconds Stage Stage Stage

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Pipes & Filters

Data flows through pipes and is processed by filters

Filter

Filter

Filter

Pipe

Filter

Filter Filter

Write port

Read port

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Pipes & Filters

Elements

Filter: component that transforms data

Filters can be executed concurrently

Types of filters:

Data sources (input to the system)

Flow

Sinks (output of the system)

Pipe: Takes output data from one filter to the input of another filter

Properties to consider:

Buffer size

Data format

Interaction protocol

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Pipes & Filters

Constraints

Pipes connect outputs from one filter to inputs of other filters

Filters must agree on the exchange format they admit

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Pipes & Filters

Advantages
Better understanding of global system

Total behavior = sum of each filter
behavior

Reusability:
Filters can be recombined

Evolution and extensibility:
It is possible to create/add new filters

It is possible to substitute old filters by
new ones

Testability
Independent verification of each filter

Performance
It enables concurrent execution of

filters

Challenges

Possible delays in case of long pipes

It may be difficult to pass complex data

structures

Non interactivity

A filter can not interact with its environment

Backpressure

When consumers receive more data than

they can process

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Pipes & Filters

Examples & Applications

Unix

who | wc -l

Yahoo Pipes

Java Streams

Flow based programming
https://en.wikipedia.org/wiki/Flow-based_programming

Stream programming

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Pipes & Filters - uniform interface

Variant of Pipes & Filters where filters have the same interface

Elements

The same as in Pipes & Filters

Constraints

Filters must have a uniform interface

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Pipes & Filters - uniform interface

Advantages:

Independent development of filters

Re-configurability

Facilitates system understanding

Challenges:

Performance can be affected if data have to be converted to the

uniform interface

Marshalling

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Pipes & Filters - uniform interface

Examples:

Unix operating system

Programs with a text input (stdin) and 2 text outputs (stdout y stderr)

Web architecture: REST

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Job organization
Master-Slave

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Master-Slave

Master divides work in sub-tasks

Assigns each sub-task to different nodes

The computational result is obtained as the combination of the

slaves results results

Slave 1 Slave 2

Master

Slave N. . .

Problem

task 1 task 2 task N

Solution

result Nresult 2result 1

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Master-Slave

Elements

Master: Coordinates execution

Slave: does a task and returns the result

Constraints

Slave nodes are only in charge of the computation

Control is done by the Master node

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Master-Slave

Advantages

Parallel computation

Fault tolerance

Challenges

Difficult to coordinate work between slaves

Dependency on Master node

Dependency on physical configuration

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Master-Slave

Applications:

Process control systems

Embedded systems

Fault tolerant systems

Search systems

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Interactive systems
MVC: Model - view - controller

MVC variants

PAC: Presentation - Abstraction - Control

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MVC

MVC: Model - View - Controller

Proposed by Trygve Reenskaug (end of 70’s)

Popular solution for GUIs

Controller separates model from view

"Mental model" offered through views

Mental
Model

Controller

Model

View 1

View 2

User

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MVC

Elements
Model: represents business logic and state

View: Offers state representation to the user

Controller: Coordinates interaction, views and model

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MVC

Constraints

Controller processes user events

Creates/removes views

Handles interaction

Views only show values

Models are independent of controllers/views

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MVC

Advantages
Supports multiple views of the

same model

Views synchronization

Separation of concerns
Interaction (controller), state

(model)

It is easy to create new views and
controllers

Easy to modify look & feel

Creation of generic frameworks

Challenges

Increases complexity of GUI
development

Coupling between controllers and
views

Controllers/Views should depend on a
model interface

Some difficulties for GUI tools

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MVC

Applications

Lots of web frameworks follow MVC

Ruby on Rails, Spring MVC, Play, etc.

Some variants

Push: controllers send orders to views

Ruby on Rails, Struts1

Pull: controllers receive orders from views

Play framework, Struts2

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o MVC variants

PAC

Model-View-Presenter

Model View ViewModel

Model View Update

...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o PAC

PAC: Presentation-Abstraction-Control

Hierarchy of agents

Each agent contains 3 components

PresentationAbstraction Control

PAC Agent

PresentationAbstraction Control

PAC Agent

PresentationAbstraction Control

PAC Agent

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o PAC

Elements
Agents with

Presentation: visualization aspects

Abstraction: data model of an agent

Control: connects presentation and abstraction components and enables
communication between agents

Hierarchical relationship between agents

Constraints
Each agent is in charge of some functionality

No direct communication between abstraction and presentation in each
agent

Communication through the control component

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o PAC

Advantages

Separation of concerns

Identifies functionalities

Support for changes and

extensions

It is possible to modify an agent

without affecting others

Multitask

Agents can reside in different

threads, processes or machines

Challenges

Complexity of the system

Too many agents can generate a complex

structure which can be difficult tom

maintain

Complexity of control components

Control components handle communication

Quality of control components is important

for whole quality of the system

Performance

Communication overload between agents

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o PAC

Applications

Network monitoring systems

Mobile robots

Drupal is based on PAC

Relationships

This patterns is related with MVC

MVC has no agent hierarchy

This pattern was re-discovered as Hierarchical MVC

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Repository
Shared data

Blackboard

Rule based

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Shared data

Independent components access the same state

Applications based on centralized data repositories

Component Component

Shared
Data

Component
...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Shared data

Elements

Shared data

Database or centralized repository

Components

Processors that interact with shared data

Component Component

Shared
Data

Component
...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Shared data

Constraints

Components interact with the global state

Components don't communicate between each other

Only through shared state

Shared data repository handles data stability and consistency

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Shared data

Advantages

Independent components

They don't need to be aware of

the existence of other

components

Data consistency

Centralized global state

Unique Backup of all the system

state

Challenges

Unique point of failure

A failure in the central repository can

affect the whole system

Distributing the central data can be

difficult

Possible bottleneck

Inefficient communication

Problems for scalability

Synchronization to access shared data

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Shared data

Applications

Lots of systems use this approach

Some variants

This style is also known as:

Shared Memory, Repository, Shared data, etc.

Blackboard

Rule based systems

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Blackboard

Complex problems which are difficult to solve

Knowledge sources solve parts of the problem

Each knowledge source aggregates partial solutions to the

blackboard

Knowledge
Source

Knowledge
Source

Blackboard

Knowledge
Source ...

Control

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Blackboard

Elements

Blackboard: Central data repository

Knowledge source: solves part of the problem and

aggregates partial results

Control: Manages tasks and checks the work state

Knowledge
source

Knowledge
source

Blackboard

Knowledge
source ...

Control

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Blackboard

Constraints

Problem can be divided in parts

Each knowledge source solves a part of the problem

Blackboard contains partial solutions that are improving

Knowledge
source

Knowledge
source

Blackboard

Knowledge
source ...

Control

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Blackboard

Advantages

Experimentability

Can be used for open problems

Facilitates strategy changes

Reusability

Knowledge sources can be

reused

Fault tolerance

Challenges
Debugging

No warranty that the right solution will be found

Difficult to establish control strategy

Performance
It may need to review incorrect hypothesis

High development cost
Parallelism implementation

It is necessary to synchronize blackboard access

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Blackboard

Applications

Some speech recognition systems

HEARSAY-II

Pattern recognition

Weather forecasts

Games

Analysis of molecular structure

Crystalis

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Rule based systems

Variant of shared memory

Shared memory = Knowledge base

Contains rules and facts

Inference
Engine

Knowledge base
Rules + facts

User
Interface

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Rule based systems

Elements:

Knowledge base: Rules and facts about some domain

User interface: Queries/modifies knowledge base

Inference engine: Answers queries from data and knowledge base

Inference
Engine

Knowledge base
Rules + facts

User
Interface

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Rule based systems

Constraints:

Domain knowledge captured in knowledge base

Limit imperative access to knowledge base

It is based on rules like:

IF antecedents THEN consequent

Limits expressiveness with regards to imperative languages

Inference
Engine

Knowledge base
Rules + facts

User
Interface

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Rule based systems

Advantages

Maintainability

It may be easy to modify the

knowledge base

Specially tailored to be modified by

domain experts

Separation of concerns

Algorithm

Domain knowledge

Reusability

Challenges

Debugging

Performance

Rules creation and maintenance

Introspection

Automatic rule learning

Runtime update of rules

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Rule based systems

Applications

Expert system

Production systems

Rules libraries in Java

JRules, Drools, JESS

Declarative, rule based languages

Prolog (logic programming)

BRMS (Business Rules Management Systems)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Invocation
Call-return

Client-Server

Event based architectures

Publish-Subscribe

Actor models

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Call-return

A component calls another component and waits for the answer

Component A Component B

call

return

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Call-return

Elements

Component that does the call

Component that sends the answer

Constraints

Synchronous communication:

The caller waits for the answer

Componente A Componente B

call

return

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Call-return

Advantages

Easy to implement

Challenges

Problems for concurrent computation

If component is blocked waiting for the answer

It can be using unneeded resources

Distributed environments

Little utilization of computational capabilities

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Client-Server

Variant of layers

2 layers physically separated (2-tier)

Functionality is divided in several servers

Clients connect to services

Interface request/response

Network

request

response

client
server

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Client-Server

Elements

Server: offers services through a query/answer protocol

Client: does queries and process answers

Network protocol: communication management between clients and

servers

Network

request

response

client
server

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Client-Server

Constraints

Clients communicate with servers

Not the other way

Clients are independent from other clients

Servers don't have knowledge about clients

Network protocol establishes some communication warranties

Network

request

response

client
server

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Client-Server

Advantages
Distribution

Servers can be distributed
Low coupling

Separation of functionality between
clients/servers

Independent development

Scalability

Availability
Functionality available to all clients

But not all the servers need to offer
all functionality

Challenges

Each server can be a single point of

failure

Server attacks

Unpredictable performance

Dependency on the system and the

network

Problems when servers belong to other

organizations

How can quality of service be warranted?

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Client-Server

Variants

Stateless

Replicated server

With cache

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Network

Client-Server stateless

Constraint

Server does not store information about clients

Same query implies same answer

query

answer

client
server

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Client-Server stateless

Advantages

Scalability

Challenges

Application state management

Client must remember requests

Handle information between requests

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Network

Replicated server

Constraint

Several servers offer the same service

Offer the client the appearance that there is only one server

query

answer
client

server

server

server

Abstract
Server

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Replicated server

Advantages

Better answer times

Less latency

Fault tolerance

Challenges

Consistency management between replicated servers

Synchronization

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Client-server with cache

Cache = mediator between client/server

Stores copies of previous answers to the server

When a query is received it return the cached answer without asking the

original server

Network
query

answer
client server

Cache

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Client-server with cache

Elements:

Intermediate cache nodes

Constraints

Some queries are directly answered by the cache node

Cache node has a policy for answer management

Expiration time

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Client-server with cache

Advantages:

Less network overload

Lots of repeated requests can

be stored in the cache

Less answer time

Cached answers arrive earlier

Challenges

Complexity of configuration

Expiration policy

Not appropriate for certain domains

When high fidelity of answers is

needed

Example: real time systems

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Event driven architecture (EDA)

Event
Producer

Event
Processor

Event
Consumer

event event

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Event driven architecture

Elements:

Event:

Something that has happened (≠ request)

Event producer

Event generator (sensors, systems, ...)

Event consumer

DB, applications, scorecards, ...

Event processor

Transmission channel

Filters and transforms events

Event
Producer

Event
Processor

Event
Consumer

event event

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Event driven architecture

Constraints:

Asynchronous communication

Producers generate events at any moment

Consumers can be notified of events at any moment

Relationship one-to-many

An event can be sent to several consumers

Event
Producer

Event
Processor

Event
Consumer

event event

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Event driven architecture

Advantages

Decoupling

Producer does not depend on

consumer, nor vice versa.

Timelessness

Events are published without

any need to wait for the

termination of any cycle

Asynchronous

In order to publish an event

there is no need to finish any

process

Challenges

Non sequential execution

Possible lack of control

Consistency

Difficult to debug

Event
Producer

Event
Processor

Event
Consumer

event event

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Event driven architecture

Applications

Event processing networks

Event-Stream-Processing (ESP)

Complex-event-processing

Variants

Publish-subscribe

Actor models

Related patterns

CQRS, Event sourcing

Event
Producer

Event
Processor

Event
Consumer

event event

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Publish-subscribe

Components subscribe to a channel to receive messages from other

components

Component

Event Bus

Subscribe
Port

Publish
Port

Component

Component Component

Component

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Publish-subscribe

Elements:

Component:

Component that subscribes to a channel

Publication port

It is registered to publish messages

Subscription port

It is registered to receive some kind of messages

Event bus (message channel):

Transmits messages to subscribers

Event Bus

Subscribe
Port

Publish
Port

Component Component

Component Component Component

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Publish-subscribe

Constraints:

Separation between subscription/publication port

A component may have both ports

Non-direct communication

Asynchronous communication in general

Components delegate communication responsibility to the channel

Event Bus

Subscribe
Port

Publish
Port

Component Component

Component Component Component

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Publish-subscribe

Advantages

Communication quality

Improves performance

Debugging

Low coupling between components

Consumers do not depend on

publishers

...nor vice versa...

Challenges

It adds a new indirection level

Direct communication may be more
efficient in some domains

Complex implementation

It may require COTS

Event Bus

Component Component

Component Component Component

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Actor models

Used for concurrent computation

Actors instead of objects

There is no shared state between actors

Asynchronous message passing

Theoretical developments since 1973 (Carl Hewitt)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Actor models

Elements

Actor: computational entity with state

It communicates with other actors sending messages

It process messages one by one

Messages

Addresses: Identify actors (mailing address)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Actor models

Constraints

An actor can only:

Send messages to other actors

Messages are immutable

Create new actors

Modify how it will process next message

Actors are decoupled

Receiver does not depend on sender

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Actor models

Constraints (2)

Local addresses

An actor can only send messages to known addresses

Because they were given to it or because he created them

Parallelism:

All actions are in parallel

No shared global state

Messages can arrive in any order

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Actor models

Challenges

Message sending

How to handle arriving messages

Actor Coordination

Non-consistent systems by

definition

Advantages

Highly parallel

Transparency and scalability

Internal vs external addresses

Non-local actor models
Web Services

Multi-agent systems

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Actor models

Implementations

Erlang (programming language)

Akka (library)

Applications

Reactive systems

Examples: Ericsson, Facebook, twitter

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o CQRS

Command Query Responsibility Segregation
Separate models in 2 parts

Command: Does changes (updates information)

Query: Only queries (get information)

Application

Model

User
Interface

Data
Base

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o CQRS

Command Query Responsibility Segregation
Separate models in 2 parts

Command: Does changes (updates information)

Query: Only queries (get information)

Application

Query

User
Interface

Data
Base

Command

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o CQRS

Scalability

Optimize queries (read-only)

Asynchronous commands

Facilitates team decomposition and

organization

One team for read access (queries)

Another team for write/update access

(command)

Hybrid operations

Both query and command

Example: pop() in a stack

Complexity

For simple CRUD applications it can be too

complex

Synchronization

Possibility of queries over non-updated data

Applications

Axon Framework

Advantages Challenges

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Event Sourcing

All changes to application state are stored as a sequence of events

Every change is captured in an event store

It is possible to trace and undo changes

Write

--

Event
store

Event
Driver

Read

snapshots

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Event Sourcing
Elements

Events: something that has happened, in the past

Event store: Events are always added (append-only)

Event driver: handles the different events

Snapshots of aggregated state (optional)

Write

--

Event
store

Event
Driver

Read

snapshots

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Event Sourcing

Fault tolerance

Traceability

Determine the state of the

application at any time

Rebuild and event-replay

It is possible to discard an

application state and re-run the

events to rebuild a new state

Scalability

Append-only DB can be optimized

Advantages

Novelty of development
Different with traditional systems

Eventual consistency

Software updates

Different event versions together?

Resource management
Granularity of events

Event storage grows with time

Snapshots can be used for optimization

Challenges

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Event Sourcing

Applications

Database systems

Datomic

EventStore

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Adaptable Systems
Plugins

Microkernel

Reflection

Interpreters and DSL

Mobile code

- Code on demand

- Remote evaluation

- Mobile agents

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Plugin
Plugin

Plugins

It allows to extend the system using plugins that add new functionality

Runtime
engine

Base system

Plugin

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Plugins

Elements

Base system:

System that allows plugins

Plugins: Components that can be added/removed dynamically

Runtime engine:

Starts, localizes, initializes, executes, and stops plugins

Plugin
Plugin

Runtime
engine

Base system

Plugin

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Plugins

Constraints

Runtime engine manages plugins

System can add/remove plugins

Some plugins can depend on other plugins

The plugin must declare dependencies and the exported API

Plugin
Plugin

Runtime
engine

Base system

Plugin

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Plugins

Advantages

Extensibility

Application can get new

functionalities in some ways that

were not foreseen by the original

developers

Customization

Application can have a small

kernel that is extended on

demand

Challenges

Consistency

Plugins must be added to the system

in a sound way

Performance

Delay searching/configuring plugins

Security

Plugins made by third parties can

compromise security

Plugin management and

dependencies

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Plugins

Examples

Eclipse

Firefox

Technologies

Component systems: OSGi

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Microkernel

Identify minimal functionality in a microkernel

Extra functionality is added using internal servers

External server handles communication with other systems

MicrokernelAdapter

Servidor
internoServidor

internoInternal
server

External
server

Client

System

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Microkernel

Elements

Microkernel: Minimal functionality

Internal server: Extra functionality

External server: Offers external API

Client: External application

Adapter: Component that establish communication with external server

MicrokernelAdapter

Servidor
internoServidor

internoInternal
server

External
server

Client

System

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Microkernel

Constraints:

Microkernel implements only minimal functionality

The rest of the functionality is implemented using internal servers

Communication with clients by external servers

MicrokernelAdapter

Servidor
internoServidor

internoInternal
server

External
server

Client

System

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Microkernel

Advantages

Portability

It is only needed to port the kernel

Flexibility and extensibility

Adding new functionality with new

internal servers

Security and reliability

Critical parts of the system are

encapsulated

Errors in external parts don't affect

the microkernel

Challenges

Performance

A monolithic can be more efficient

Design complexity

Identify components in the

microkernel

It may be difficult to separate parts to

internal servers

Unique point of failure

If microkernel fails, the whole system

may fail

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Microkernel

Applications

Operating systems

Games

Editors

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Reflection

Change the structure and behavior of an application dynamically

Systems that can modify themselves

Elements

Base level: Implements application logic

Metalevel: Aspects that can be modified

Metaobject protocol: Interface that can modify the metalevel

Base level

Metalevel

Meta-object
Protocol

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Reflection

Constraints

Base level uses metalevel aspects for its behavior

At runtime, it is possible to modify the metalevel using the metaobject

protocol

Base level

Metalevel

Meta-object
Protocol

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Reflection

Advantages

Flexibility

Adapt to changing conditions

Change behavior of running

system without changing source

code or stopping execution

Challenges

Implementation

Not all languages enable meta-

programming

More difficult to combine with static

type systems

Performance

It may be necessary to do some

optimizations to limit reflection

Security:

Consistency maintenance

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Reflection

Applications

Most dynamic languages support reflection

Scheme, CLOS, Ruby, Python,

Intelligent systems

Self-modifiable code

Base level

Metalevel

Meta-object
Protocol

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Interpreters and DSLs

Include a domain specific language (DSL) that is interpreted by the

system

Context

Interpreter
DSL

program

Application

User

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Interpreters and DSLs

Elements

Interpreter: Module that executes the program

Program: Written in the DSL

DSL can be designed so the end user can write programs

Context: Environment where the program is executed

Context

Interpreter
Program
in DSL

Application

User

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Interpreters and DSLs

Constraints

Interpreter runs the program interacting with the context

It is necessary to define a DSL

Syntax (grammar, parsing,...)

Semantics (behavior)

Context

Interpreter
Program
in DSL

Application

User

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Interpreters and DSLs

Advantages

Flexibility

Adapt application behavior to user

needs

Usability

End users can write their own

programs

Adaptability

Easy to adapt to unforeseen

situations

Challenges

Design of the DSL

Complexity of implementation

Interpreter

Separation of context/interpreter

Performance

Possible programs may be not optimal

Security

Handle wrong programs

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Interpreters and DSLs

Variants:

Embedded DSLs

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Embedded DSLs

Embedded DSLs

Domain specific languages that are embedded in general purpose
host languages
Popular approach in some languages like Haskell, Ruby, Scala, etc.

Advantages:
Reuse of host language syntax

Access to libraries and IDEs of host language

Challenges
Separation between DSL and host language

End users may have too many expressivity

DSL
Libraries

Interpreter
of language L

Program
in L

Application

User

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Mobile code

Code that is transferred from one machine to another

System A sends a program to be run by system B

System B must contain an interpreter for the language in which the program

is written

Network

System
A

System
B

Interpreter

program

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Mobile code

Elements

Interpreter: Runs the code

Program: Program that is transferred

Network: Transfers the program

Network

System
A

System
B

Interpreter

program

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Mobile code

Constraints

The program must be run in the receiver system

The network protocol transfers the program

Network

System
A

System
B

Interpreter

program

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Mobile code

Advantages

Flexibility and adaptability to new environments

Parallelism

Challenges

Complexity of implementation

Security

Network

System
A

System
B

Interpreter

program

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Mobile code

Variants

Code on demand

Remote evaluation

Mobile Agents

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

Network

Code on demand

Code is downloaded and run by the client

Combination between mobile code and client-server

Example:

ECMAScript

Client

Program

ServerQuery

Interpreter
Answer

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Code on demand

Elements

Client

Server

Code that is transferred from server to client

Constraints

Code resides or is generated by the server

It is transferred to the client when it asks for it

It is run by the client

Client must have an interpreter for the corresponding language

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Code on demand

Advantages

Improves user experience

Extensibility: Application can add

new functionalities that were not

foreseen

No need to install or download a

whole application

Always Beta

Adaptability to client environment

Challenges

Security

Coherence

It may be difficult to ensure an

homogeneous behavior in different

types of clients

Client can even decide not to run the

program

Reminder: Responsive design

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Code on demand

Applications:

RIA (Rich Internet Applications)

HTML5 standardizes a lot of APIs

Improves coherence between clients

Variants

AJAX

Initially: Asynchronous Javascript and XML

The program that is running at the client side sends asynchronous

requests to the server without stopping its running

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Remote evaluation

System A sends program to system B to be run and obtain its results

System
A

System
B

Answer
(Result)

Interpreter

Program

Query

Network

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Remote evaluation

Elements

Sender: Does the query including the program

Receiver: Runs the program and returns the results

Constraints

Receiver runs the program

It must contain some interpreter of the program language or the program

could be in machine code

Network protocol transfers program and results

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Remote evaluation

Advantages

Exploits capabilities of third parties

Computational capabilities, memory, resources, etc.

Challenges

Security

Untrusted code

Virus = variant of this style

Configuration

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Remote evaluation

Example:

Volunteer computation

SETI@HOME

It was the basis for the BOINC system
Berkeley Open Infrastructure for Network Computing

Other projects: Folding@HOME, Predictor@Home, AQUA@HOME, etc.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Mobile agents

Code and data can move from one machine to another to be run

The process takes its state from machine to machine

Code can move autonomously

System B

Program Interpreter

System A

Program Interpreter

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Mobile agents

Elements

Mobile agent: Program that travels and is run from one machine or

another autonomously

System: Execution environment where the mobile agents are run

Network protocol: transfers state between agents

Systema B

Program Interpreter

System A

Program Interpreter

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Mobile agents

Constraints

Systems host and run mobile agents

Mobile agents can decide to change its running from one system to

another

They can communicate with other agents

Systema B

Program Interpreter

System A

Program Interpreter

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Mobile agents

Advantages

It can reduce network traffic

Code blocks that are run are

transmitted

Implicit parallelism

Fault tolerance to network failures

Agents can be conceptually simple

Agent = independent unit of execution

It is possible to create mobile agent

systems

Emergent behaviour

Adaptability to environtment changes

Reactive and learning systems

Challenges

Complexity of configuration

Security

Malicious or incorrect code

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Mobile agents

Challenges

Complexity of configuration

Security

Malicious or incorrect code

Systema B

Program Interpreter

System A

Program Interpreter

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o Mobile agents

Applications

Information retrieval

Web crawlers

Peer-to-peer systems

Telecommunications

Remote control and monitoring

Systems:

JADE (Java Agent DEvelopment framework)

IBM Aglets

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

 S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
 o

f
O

v
ie

d
o

End of presentation

	Sección predeterminada
	Slide 1: Runtime/behaviour
	Slide 2: Runtime behaviour
	Slide 3: 1st part. Basic and monolith styles

	Data flow
	Slide 4: Data flow
	Slide 5: Batch
	Slide 6: Batch
	Slide 7: Batch
	Slide 8: Pipes & Filters
	Slide 9: Pipes & Filters
	Slide 10: Pipes & Filters
	Slide 11: Pipes & Filters
	Slide 12: Pipes & Filters
	Slide 13: Pipes & Filters - uniform interface
	Slide 14: Pipes & Filters - uniform interface
	Slide 15: Pipes & Filters - uniform interface

	Job Organization
	Slide 16: Job organization
	Slide 17: Master-Slave
	Slide 18: Master-Slave
	Slide 19: Master-Slave
	Slide 20: Master-Slave

	Interactive systems
	Slide 21: Interactive systems
	Slide 22: MVC
	Slide 23: MVC
	Slide 24: MVC
	Slide 25: MVC
	Slide 26: MVC
	Slide 27: MVC variants
	Slide 28: PAC
	Slide 29: PAC
	Slide 30: PAC
	Slide 31: PAC

	Repository
	Slide 32: Repository
	Slide 33: Shared data
	Slide 34: Shared data
	Slide 35: Shared data
	Slide 36: Shared data
	Slide 37: Shared data
	Slide 38: Blackboard
	Slide 39: Blackboard
	Slide 40: Blackboard
	Slide 41: Blackboard
	Slide 42: Blackboard
	Slide 43: Rule based systems
	Slide 44: Rule based systems
	Slide 45: Rule based systems
	Slide 46: Rule based systems
	Slide 47: Rule based systems

	Invocation
	Slide 48: Invocation
	Slide 49: Call-return
	Slide 50: Call-return
	Slide 51: Call-return
	Slide 52: Client-Server
	Slide 53: Client-Server
	Slide 54: Client-Server
	Slide 55: Client-Server
	Slide 56: Client-Server
	Slide 57: Client-Server stateless
	Slide 58: Client-Server stateless
	Slide 59: Replicated server
	Slide 60: Replicated server
	Slide 61: Client-server with cache
	Slide 62: Client-server with cache
	Slide 63: Client-server with cache
	Slide 64: Event driven architecture (EDA)
	Slide 65: Event driven architecture
	Slide 66: Event driven architecture
	Slide 67: Event driven architecture
	Slide 68: Event driven architecture
	Slide 69: Publish-subscribe
	Slide 70: Publish-subscribe
	Slide 71: Publish-subscribe
	Slide 72: Publish-subscribe
	Slide 73: Actor models
	Slide 74: Actor models
	Slide 75: Actor models
	Slide 76: Actor models
	Slide 77: Actor models
	Slide 78: Actor models
	Slide 79: CQRS
	Slide 80: CQRS
	Slide 81: CQRS
	Slide 82: Event Sourcing
	Slide 83: Event Sourcing
	Slide 84: Event Sourcing
	Slide 85: Event Sourcing

	Adaptable
	Slide 86: Adaptable Systems
	Slide 87: Plugins
	Slide 88: Plugins
	Slide 89: Plugins
	Slide 90: Plugins
	Slide 91: Plugins
	Slide 92: Microkernel
	Slide 93: Microkernel
	Slide 94: Microkernel
	Slide 95: Microkernel
	Slide 96: Microkernel
	Slide 97: Reflection
	Slide 98: Reflection
	Slide 99: Reflection
	Slide 100: Reflection
	Slide 101: Interpreters and DSLs
	Slide 102: Interpreters and DSLs
	Slide 103: Interpreters and DSLs
	Slide 104: Interpreters and DSLs
	Slide 105: Interpreters and DSLs
	Slide 106: Embedded DSLs
	Slide 107: Mobile code
	Slide 108: Mobile code
	Slide 109: Mobile code
	Slide 110: Mobile code
	Slide 111: Mobile code
	Slide 112: Code on demand
	Slide 113: Code on demand
	Slide 114: Code on demand
	Slide 115: Code on demand
	Slide 116: Remote evaluation
	Slide 117: Remote evaluation
	Slide 118: Remote evaluation
	Slide 119: Remote evaluation
	Slide 120: Mobile agents
	Slide 121: Mobile agents
	Slide 122: Mobile agents
	Slide 123: Mobile agents
	Slide 124: Mobile agents
	Slide 125: Mobile agents
	Slide 126: End of presentation

