
Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Quality attributes

Jose E. Labra Gayo

EN
English

2023-24

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Quality attributes
Also known as:

Architecture characteristics

Non-functional requirements

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Types of requirements

Requirements can be categorized as:

Functional requirements: state what the system must do, how it must

behave or react to run-time stimuli.

Quality attribute requirements. Annotate (qualify) functional requirements

Examples: Availability, modifiability, usability, security,...

Also called: non-functional requirements

Constraints. A design decision that has already been made

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Functional requirements

Functionality = ability of the system to do the work for which it was

intended

Functionality has a strange relationship to architecture:

It does not determine architecture;
If functionality were the only requirement, the system could exist as a single

monolithic module with no internal structure at all

Functionality and quality attributes are orthogonal

Functionality

Q
u
al

it
y

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Quality attributes (QA)

Quality attributes annotate (qualify) the functionality

If a functional requirement is "when the user presses the green

buttom an options dialog appears"

- A performance QA could describe how quickly

- An availability QA could describe this option could fail, or how often it

will be repaired

- A usability QA could describe how easy is to learn this function

Quality attributes influence the architecture

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o What is Quality?

Degree to which a system satisfies the stated and implied

needs of its stakeholders, providing value
- Degree (not Boolean)

- Quality = Fitness for purpose (stakeholders needs)

- Conform to requirements (stated and implied)

- Providing value

Several definitions of quality
https://en.wikipedia.org/wiki/Software_quality

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Quality attributes and trade-offs

QAs are all good

...but value depends on the project & stakeholder

"Best quality"...for what?, for whom?

QAs are not independent

Some qualities can conflict

What matters most?

Example: A very secure system can be less usable

There is always a price

What is your budget?

There is no single perfect system or architecture!

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Specifying quality attributes

2 considerations:

QAs by themselves are not enough

They are non-operational

Example: It is meaningless to say that a system shall be modifiable or

maintainable

The vocabulary describing QAs varies widely

It is necessary to describe each attribute separately

QA scenarios: A common form to specify QA requirements

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Quality attribute scenario

Describe a stimulus of the system and a measurable response to the

stimulus

Stimulus = event triggered by a person or system

The stimulus generates a response

Must be testable

Response must be externally visible and measurable

Artifact
Response
measureStimulus Response

Source
Environment

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Components of QA scenario

Source: Person or system that initiates the stimulus

Stimulus: Events that requires the system to respond

Artifact: Part of the system or the whole system

Response: Externally visible action

Response measure: Success criteria for the scenario

Should be specific and measurable

Environment: Operational circumstances

Should be always defined (even if it is "normal")

Artifact
Response
measureStimulus Response

Source
Environment

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o QA scenario, example 1

Artifact
User interface

Response
Measure

< 1secStimulus
20 concurrent
clients

Response
Response time

Source
Clients

Environment
Normal operation

Source of
stimulus

Stimulus Artifact Environment Response Response
measure

Clients 20 concurrent
clients

User interface Normal
operation

Response time <1sec

.

Performance: If there are 20 concurrent clients, the response time should be less than 1 sec.
under normal operation

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o QA Scenario structure for availability

Artifact
Processors

Communication
channels

Persistent
storage

Processes

Response
Measure

Time or time interval

system must be

available

Time in degraded mode

Time to dtect fault

Repair time

Proportion of faults

system handles

Stimulus
Fault

Omission
Crash

Incorrect
timing

Incorrect
response

Response
Prevent fault

from becoming
failure

Detect fault
Recover from

fault
Log fault

Disable event
source

Be unavailable
Degraded mode

Source
Internal/external

people
hardware,
software
physical

infrastructure
physical

environment

Environment
Normal operation

Startup
Shutdown

Repair mode
Degraded operation

Overloaded operation

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Types of QA scenarios

Usage scenarios

The system is used (any use case or system function is executed)

Describe how the system behaves in these cases

Runtime, performance, memory consumption, throughput,...

Change (or modification) scenarios

Any component within the system, its environment or its

operational infrastructure changes

Failure scenarios:

Some part of the system, infrastructure or neighbours fail

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Prioritizing QA scenarios

Scenarios should be prioritized

2 values (Low/Medium/High)

How important it is for success (ranked by customer)

How difficult it is to achieve (ranked by architect)

Ref Quality
Attribute

Scenario Priority

1 Availability When the database does not respond, the system should log the
fault and respond with stale data during 3 seconds

High, High

2 Availability A user searches for elements of type X and receives a list of Xs 99%
of the time on average over the course of the year

High, Medium

3 Scalability New servers can be added during the planned maintainance
window (less than 7 hours)

Low, Low

4 Performance A user sees search results within 5 seconds when the system is at an
average load of 2 searches per second

High, High

5 Reliability Updates to external elements of type X should be reflected on the
application within 24 hours of the change

Low, Medium

.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Identifying quality attributes

Finding QAs
Most of the time, QAs are not explicit

They're only verbally said alongside func. requirements

Usually implicit or said without much thought

Software architect must do educated guesses

Quality Attribute Workshops
Meetings where stakeholders specify QAs

Formal checklists
ISO25010

Wikipedia: https://en.wikipedia.org/wiki/List_of_system_quality_attributes

https://en.wikipedia.org/wiki/List_of_system_quality_attributes

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Typical quality attributes

Availability

Modifiability

Performance

Security

Testability

Maintainability

Usability

Scalability

Interoperability

Portability

Changeability

. . .

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o ISO-25010 Software Quality Model

Systems and software Quality Requirements and

Evaluation (SQuaRE)

2 parts:

- Quality in-use

- Product quality

https://arquisoft.github.io/Iso25010QualityAttributes.html

https://arquisoft.github.io/Iso25010QualityAttributes.html

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Quality Attribute tree

Mindmap representations can be useful to visualize QA scenarios

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Measuring quality attributes

QA scenarios require response measures

Common problems:
Many QA have vague meanings

Example: deployability, scalability

Wildly varying definitions

No universal definitions

Too composite

Usually, a QA is composed of several features

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Software metrics

Goal: Objective measures which can be automatically computed

Numerous metrics for different aspects

More information:

https://en.wikipedia.org/wiki/Software_metric

https://en.wikipedia.org/wiki/Software_metric

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Operational measures

Lots of metrics

Absolute values

Examples: Number of users, number of errors

Statistical values and models

Example

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
where

𝑀𝑇𝐵𝐹 = 𝑚𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 (𝑢𝑝𝑡𝑖𝑚𝑒)

𝑀𝑇𝑇𝑅 = 𝑚𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑟𝑒𝑐𝑜𝑣𝑒𝑟 (𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒)

Availability Downtime/90days Downtime/year

99,0% 21hours, 36 minutes 3 days, 15.6 hours

99,99% 12 minutes, 58secs 52min, 34 secs

99,9999% 8 secs 32 secs

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Structural measures

Measure the structure of the modules

Examples:
Cyclomatic complexity (CC) from McCabe, 1976

Goal: Objective measure of complexity of code

It is obtained from the program control flow graph

𝐶𝐶 = 𝐸 − 𝑁 + 2 where
𝐸 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠
𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

Example:
public static void main(String[] args) {

int max = 10 ;
int next = 0 ;
while (next < max) {
next++;
if (next % 2 == 0)
System.out.println("Even " + next);

else
System.out.println("Odd " + next);

}
}

int max = 10 ;
int next = 0 ;

while (next < max) {

next++;

if (next % 2 == 0)

println("Odd "+next); println("Even "+next);

𝐶𝐶 = 10 − 9 + 2 = 3

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Process measures

Measure process aspects like agility, testability, maintainability, etc.

Examples:

Testability: Code-coverage during testing

Percentage of lines of code that have been run during the test phase

Deployability:

% of successful to failed deploys

How long deployment takes

Issues/bugs in deployment

...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o 4 key metrics or DORA metrics

Origin: State of DevOps report by DORA (DevOps Research and Assessment team)

Measure High delivery performance

1. Lead Time to change

Time from code committed to code successfully running in production

2. Deployment frequency

How often does an organization deploy code to production

3. Mean time to restore (MTTR)

how long does it take to restore service after an incident

4. Change failure rate

Percentage of changes to production that result in degraded service

https://www.devops-research.com/quickcheck.html

https://www.devops-research.com/quickcheck.html

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Governing quality attributes

Evolutionary architectures

Fitness functions: mechanism that provides objective integrity

assessment of some combination of quality attributes

Make QA measures and evolve the architecture

	Sección predeterminada
	Slide 1: Quality attributes

	Quality attributes
	Slide 2: Quality attributes
	Slide 3: Types of requirements
	Slide 4: Functional requirements
	Slide 5: Quality attributes (QA)
	Slide 6: What is Quality?
	Slide 7: Quality attributes and trade-offs
	Slide 8: Specifying quality attributes
	Slide 9: Quality attribute scenario
	Slide 10: Components of QA scenario
	Slide 11: QA scenario, example 1
	Slide 12: QA Scenario structure for availability
	Slide 13: Types of QA scenarios
	Slide 14: Prioritizing QA scenarios
	Slide 15: Identifying quality attributes
	Slide 16: Typical quality attributes
	Slide 17: ISO-25010 Software Quality Model
	Slide 18: Quality Attribute tree
	Slide 19: Measuring quality attributes
	Slide 20: Software metrics
	Slide 21: Operational measures
	Slide 22: Structural measures
	Slide 23: Process measures
	Slide 24: 4 key metrics or DORA metrics
	Slide 25: Governing quality attributes

