Software architecture

EN



Universidad de Oviedo



# Software Architecture Presentation



Jose E. Labra Gayo Pablo González Cristian Augusto Jorge Álvarez



### Software Architecture

#### **Degree: Computer Science - Software Engineering**

Type: Mandatory, third year Credits: 6 Period: 2nd Semester Language: English/Spanish

#### Resources:

- Web page of course: <u>https://arquisoft.github.io/</u> Slides and public content
- Campus virtual: <u>https://www.campusvirtual.uniovi.es/</u> Mostly for internal communications

### Lecturers

Jorge Álvarez Fidalgo Irene Cid Rico Pablo González González Jose Emilio Labra Gayo alvarezfjorge@uniovi.es cidirene@uniovi.es gonzalezgpablo@uniovi.es labra@uniovi.es (Coordinator)

## Time dedication

6 ECTS credits ≈ 150 working hours 60 on-campus hours, 90 self-study Organization (*by week*) 2h lectures (21h total) 1h seminars (7h total) 2h laboratory practice (28h total) 2h group tutories on demand 7,5h self-study (90h total) Software architecture

### **Competences & learning outcomes**

### **General competences**

Methodological skills

**CG-1** Ability to design solutions to human complex problems

## Specific competences

#### Common to Computer Science

| Com.1  | Ability to design, develop, select and evaluate applications and systems, ensuring their reliability, safety and quality, according to ethical principles, laws and regulations.       |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Com.8  | Ability to analyse, design, build and maintain applications in a robust, secure and efficient way, and choosing the most suitable paradigms and programming languages.                 |
| Com.11 | Knowledge and application of features, functionality and structure of distributed systems, computer networks and the Internet, and to design and implement applications based on them. |

## Specific competences

### Software Engineering

- **ISW.1** Ability to develop, maintain and evaluate software systems and services that match all user requirements and behave reliably and efficiently, being affordable to develop and maintain and accomplishing quality standards, applying the theories, principles, methods and Software Engineering good practices.
- **ISW.3** Ability to solve integration problems in terms of strategies, standards and available technologies.
- **ISW.4** Ability to identify and analyse problems and to design, develop, implement, verify and document software solutions based on adequate knowledge of the theories, models and techniques.

### Learning outcomes

- **RA.IS-1.** Making complex Software Engineering Projects that provide solutions to complex problems and to solve them using techniques and technologies related to manufacturing processes, including software frameworks, architectural patterns, design and integration patterns, pursuing quality software development
- **RA.IS-3.** To apply different construction techniques in designing low level software
- **RA.IS-4.** Develop design and object-oriented programming with a high level of competence
- **RA.IS-5.** To evolve and refactor existing designs to afford changing requirements
- **RA.IS-6.** Determining the degree of maintainability, reliability and efficiency of software designs
- **RA.IS-7** To design and implement software using different middleware technologies
- **RA.IS-9** To design and to carry out checks and efficient and effective inspections about validation, verification, quality and test plans.
- **RA.IS-10** Statistically analysing the density of defects and failure probability
- **RA.IS-11** Evaluating the quality of a software process from the point of view of product quality.

Software architecture

### **Evaluation & grading**

## 3 possibilities

Continuous evaluation Differentiated assessment Extraordinary evaluation

## Continuous evaluation

Final = Theory  $\times 40\%$  + Practice  $\times 60\%$ where: Theory = Exam  $\times 70\%$  + Intermediate exercises  $\times 30\%$ Practice = Team  $\times 70\%$  + Individual  $\times 30\%$ 

Requirements:

Minimum assistance (80%) Minimum mark (theory & seminar): 5 Minimum mark (lab): 5

## Differentiated evaluation

Theory: Same as previous

Practice (2 possibilities)

1) Working in a team (minimal assistance 20%)

Mandatory: Participate in public presentation session

The mark will be: 70% team + 30% individual.

2) Working individually

During the first month the student will be assigned a project similar to the teams projects

Individual public presentation

General remark: Assignments that are not done or not delivered on time will count as 0

## **Extraordinary Evaluation**

IF continuous evaluation fails Final mark

```
Final = Theory \times 40\% + Practice \times 60\%
```

where

Theory = Exam + Individual work (seminar)

*Practice* = *Individual project* 

Both theory and practice marks must be  $\geq 5$ 

Public presentation of Individual Project

Usually after the final exam

Software architecture

## **Teaching activities**

Lectures Conferences Seminars Laboratory sessions

## Lectures

### Semi-flipped classroom methodology

All lessons recorded are available:

https://arquisoft.github.io/course2223.html

I expect/hope you watch the lessons before each session

### During the class:

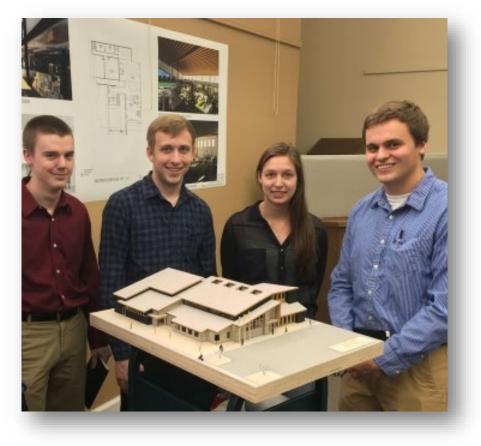
1st half: Overview of the main concepts

2nd half: Kahoot!/Quizziz/Woclap (scores will be part of the mark)

## Conferences

We will organize several conferences during the course

- Software architecture experts
- Conferences from past years are available at:
  - https://arquisoft.github.io/#Conferences
- Attendance is mandatory
- The content from conferences is part of the course
  - We can include questions from conferences in the exams


## Seminars

Team work Teams of 2-4 people Subjects proposed by teachers The work consists of A small report about the subject (like a blog post) A presentation of the topic to the class Public presentations during the seminars At least 2 questions posed by other teams Assessment: Report delivered + Presentation + Questions

### Laboratory sessions

#### Project based learning + team work

- 1. Design and document a software architecture
- 2. Implement prototype
- 3. Public presentation



### Assessment

70% team mark+ 30% individual mark

Team mark: Presentation + prototype + docs + github repo Participation in final presentation is mandatory (like an exam) Teachers select the person(s) that do the presentation Other team members can participate Individual mark: github contributions Project management tool: github.com

> **Important**: Create your github account If possible, use a login name that resembles your first name/last name...

## About the teams

#### Teams created initially by the teachers

Size: 5-8 people

Teams will work together during the whole course

Being able to work within a team is a very important skill

Members that abandon will fail continuous evaluation

In case of problems within a team:

Try to understand & solve the problem

If unsolvable communicate to the teachers as soon as possible

Possible actions:

A problematic person is removed from the team and will fail continuous evaluation

All the team members fail continuous evaluation

The team is split

## Lab sessions

#### 13 lab sessions

- During the lab sessions (2 hours)
  - 1.- A teacher will explain some concept (1 hour approx.)
  - 2.- The team will work on the project
    - That hour counts as a team meeting
    - Teams can do more extra meetings if they want

## Team meetings

### Mandatory: Keep record notes of all team meetings

One person must write the minutes

Advice: Rotate the role of scribe

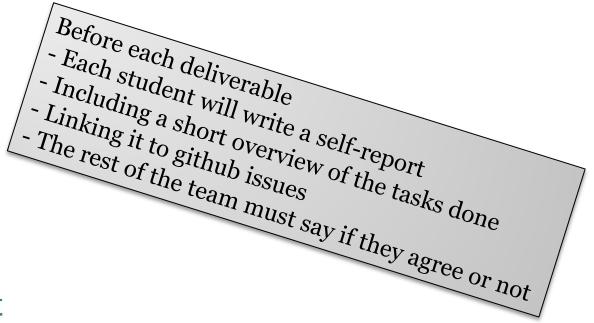
Minutes must be maintained in the project wiki

General structure of minutes:

Date/time/place of meeting

Participants

Register


Tasks done (closed github issues)

Actions to do (open github issues assigned to someone)

Agreements/decisions (maintain Architecture decision records)

## 4 Deliverables

Checkpoint at every deliverable 1<sup>st</sup> deliverable - Week 4 Documentation 0.1 + 1<sup>st</sup> Deployment 2<sup>nd</sup> deliverable - Week 7 Prototype version 0.1 + 2<sup>nd</sup> Deployment 3<sup>rd</sup> deliverable - Week 10



Prototype version 1.0 + Documentation 1.0 + Final Deployment

4<sup>th</sup> deliverable - Week 13

Prototype version 1.1 + Documentation 1.1 (Continuous deployment) Public presentation

## **Public presentation**

Last laboratory session

It acts as a Practical Exam

Participation is mandatory

Each group will present their project to the teachers

The teachers select the presenter(s)





## Material to follow the course

Web page: Slides and public information <u>https://arquisoft.github.io/</u>

Virtual campus (internal information)

Forum

Marks

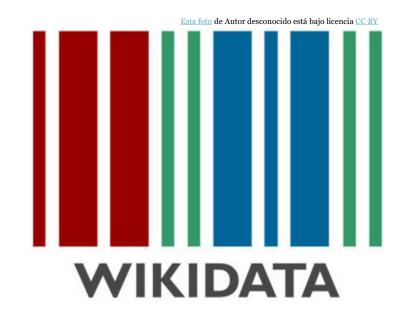
Other material

Manuals, Tutorials, Videos, etc...

## Lab assignment of this year

WIQ: **WI**kidata based **Q**uizz Show Inspired by "Saber y Ganar" quiz show Question and answer game




Description: https://arquisoft.github.io/course2324.html#labs

This picture unknown actor under <u>CC BY-NC-ND</u> licence

## About Wikidata

#### https://www.wikidata.org/

General purpose knowledge base Supports Wikipedia Free Access and free code Part of Wikimedia Foundation



Data access: <a href="https://www.wikidata.org/wiki/Wikidata:Data\_access">https://www.wikidata.org/wiki/Wikidata:Data\_access</a>

## If you have questions...

#### About the course...

Deadlines, exams, mandatory tasks, etc.

Issues at <a href="https://github.com/Arquisoft/faq/issues">https://github.com/Arquisoft/faq/issues</a> or CampusVirtual forum

The message will arrive to the rest of the students

Everyone can see the question and the answer

Everyone can even answer (answers can be counted as individual contributions)

#### About technical matters...

Use public places StackOverflow (general): <u>https://stackoverflow.com/</u> Other public places Virtual campus forum

#### About personal problems or similar questions

Send an email to the teacher

## Important dates

#### Assignment deadlines

1er deliverable
2° deliverable
3er deliverable
4° delivarable MANDATORY

4th class. 19 - 23 Feb.
7th class. 11 - 15 March
10th class. 8 - 12 April
13<sup>th</sup> class 29 April - 3 May

Theory exams Ordinary May/June?? Extraordinary July??

## 1st Kahoot!

Important: Use your Student ID to login: UOxxx If you are disconnected, connect again with UOxxx\_1, UO\_xxx\_2,... Course attendance will be taken from Kahoot! reports Software architecture

### **End of presentation**

## Schedule

| Subjects       | Total<br>hours | Onsite activities |          |              |                   |                     | Offsite activities |               |                    |       |
|----------------|----------------|-------------------|----------|--------------|-------------------|---------------------|--------------------|---------------|--------------------|-------|
|                |                | Lectures          | Seminars | Lab sessions | Group<br>tutories | Assessment sessions | Total              | Work<br>group | Individual<br>work | Total |
| 1 (Concepts)   | 40             | 7                 | 2        | 4            | 1                 | 1                   | 15                 | 15            | 10                 | 25    |
| 2 (Taxonomies) | 110            | 14                | 5        | 24           | 1                 | 1                   | 45                 | 45            | 20                 | 65    |
| Total          | 150            | 21                | 7        | 28           | 2                 | 2                   | 60                 | 60            | 30                 | 90    |