
SOFTWARE DESIGN
& MODULARITY

G r o u p 3 :
P a b l o V a l d é s F e r n á n d e z
A n d r é s Á l v a r e z M u r i l l o
D i e g o M o r a g ó n M e r a l l o

S O F T W A R E A R C H I T E C T U R E C O U R S E ,
U N I V E R S I T Y O F O V I E D O

INTRODUCTION

SOFTWARE DESIGN

SOFTWARE DESIGN PHILOSOPHY

MODULARITY

CONTENTS

Professor of Computer Science in Stanford
University
Founder of Electric Cloud
Interviewed about Software Design And
Modularity in episode 520 of Software
Engineering Radio

JOHN OUSTERHOUT

https://en.wikipedia.org/wiki/Electric_Cloud

Written by Ousterhout in 2018
Deals with relevant principles, problems and
techniques that are relevant to design more
efficient software
Used to prepare this presentation

A PHILOSOPHY OF
SOFTWARE DESIGN

Designing a software system's structure, its components,
and the interactions between them to satisfy the user's

requirements

SOFTWARE DESIGN
DEFINITION

2

4

INTERFACE DESIGN

HIGH-LEVEL DESIGN

ARCHITECTURAL DESIGN

DETAILED DESIGN

There are several types of software design, based on the abstraction level

DESIGN TYPES

1

3

Model the interaction between a system and its
environment.
The inner components of the system are ignored.

INTERFACE DESIGN

Analyze the components of the software system.
Identify the components of the system, as well as the
interactions between them.
An idea of the solution domain is formed.

ARCHITECTURAL DESIGN

Break down the different components of the system.
Identify the modules that form the components, and the
interactions between them.

HIGH-LEVEL DESIGN

Study the implementation of the different modules.
Identify each module's logical structure and responsibilities.
Determine the interfaces each module will use to
communicate with the rest

DETAILED DESIGN

Main factor limiting what can be built.

It's incremental, and increases as
dependencies are added and functionalities
are implemented.

COMPLEXITY

1 2 3
CHANGE
AMPLIFICATION

Implementing a solution requires
modifying code in many different
places.

COGNITIVE LOAD

The higher the cognitive load,
the more information developers
require to successfully solve their
tasks

UNKNOWN
UNKNOWNS

It may not be obvious neither
what code needs to be modified
nor what information developers
need to solve their tasks

HOW DOES COMPLEXITY AFFECT DEVELOPERS?

"It is more important for a module to have a simple
interface than a simple implementation"
Unavoidable complexities should be dealt with in the
module, rather than have it's users handle them.
There usually are more users than developers, so if the
users deal with them complexity will be increased far more
than if the developer does.

PULLING COMPLEXITY

DOWNWARD

Set of design practices and ideas the
development team has decided are important
and wil l lead to a good design and how these

principles should be implemented.

SOFTWARE DESIGN
PHILOSOPHY

One of the first things when starting a development should
be thinking about the design even before writing any code
an approach to the problem

HOW SHOULD YOUR DESIGN BE?

A good design emphasizes what is
important over what is deemed not
important and designs around it

CHOOSING WHAT IS
IMPORTANT

TACTICAL APPROACH

STRATEGIC APPROACH

HOW WE APPROACH DESIGN
The design philosophy and the mindset in
which we approach software development
has great importance even on the smaller
things that are not related to the overall
design like just writing simple code.

Principle based on eliminating the
conditions where an exception would arise
and let the problem resolve in a natural way
if there is no need to throw an exception.

DEFINING ERRORS
OUT OF EXISTENCE

MODULARITY

Pieces of code that can be independently created and
maintained to be used and reused in different systems.

MODULES

FUNCTIONALITY INTERFACE

The interface of a module should include everything that anyone needs to
know to use the module.
We should avoid implementing shallow modules.

SHALLOW AND DEEP MODULES

1 2 3

INDEPENDENT REUSABLE INTERCHANGEABLE

CHARACTERISTICS OF A MODULE

A software module has to be:

The main goal of abstraction is to hide as much complexity
as possible to allow programmers to focus on what’s most
important and relevant.
It's used to camouflage much of what is vital to making a
program work.

ABSTRACTION

They are logical separations of
components or code.
Big systems don’t decompose
naturally into perfect layers.

LAYERS

THE END
THANK YOU FOR LISTENING

