
Elías Llera García-Riaño
Sara Maria Ramírez Pérez

1

TECHNICAL DEBT
Technical debt in sense of architecture and design construct.

Book: Managing Technical Debt: Reducing Friction in Software Development

1. TECHNICAL DEBT REIFIES AN ABSTRACT CONCEPT

Technical debt is just a concept to promote the dialogue between business people and

technical people within a software development project. It helps developers understand the

importance of shorter time to market and the business people the relevance of early technical

decisions. To achieve it, we need to consider impact over time of the decisions, evaluate their

lifecycle costs and introduce mechanisms to express and estimate their impact. That is, giving

concrete values to an abstract concept, which helps to make the economic consequences more

real and tangible.

2. IF YOU DO NOT INCUR ANY FORM OF INTEREST, THEN YOU

PROBABLY DO NOT HAVE ACTUAL TECHNICAL DEBT

Classifying an issue as technical debt depends on the business and how the context changes.

There could be a part of the system that we know we can improve, but it is not important enough

for us now and thus doesn’t need maintenance. This means that decisions have an “interest

rate”. Perhaps there is no debt at a given moment, but the consequences of the decisions will

appear, there is no debt until you see the consequences. That is what we call potential debt. And

so, we are always incurring some interest. It is very important to understand interests and how

they change along the time to manage the technical debt.

3. ALL SYSTEMS HAVE TECHNICAL DEBT

There is always a trade-off in every single system, so every single system has some amount

of technical debt. It could be well managed, tending to zero (the ideal) or non-well managed

when struggling with some very difficult quality or development issues. The important thing is

to know the technical debt. Every software has an architecture, the difference is whether you

are aware of it versus when it happens to you. The same happens with technical debt.

4. TECHNCIAL DEBT MUST TRACE TO THE SYSTEM

It is essential to associate technical debt to explicit technical debt items (specific parts of the

system: code, design, test cases…). There exists a difference between the sources of friction

(related to processes, people…), which causes the technical debt, and the debt itself. We need

to focus on the debt itself and be able to point in the system the specific sections that need

rework at a given moment. That is what we call traceability, every technical debt item should be

traced to specific parts of the system.

 It’s very easy to suffer from the Kitchen Sink Syndrome by thinking everything going bad in

the system is a technical debt.

“Get specific, get concrete and trace it to the system, not to the abstract level”

Elías Llera García-Riaño
Sara Maria Ramírez Pérez

2

5. TECHNICAL DEBT IS NOT SYNONYMOUS WITH BAD

QUALITY

There are bad qualities that are indeed a kind of technical debt, but we have tools to identify

and manage those problems, such as static code analysers, quality assurance practices, defect

management, quality conformance…

We even have decisions, related to technologies of the system, intentionally taken just to

gain some value. This also create technical debt but provide more value than costs. What we

need to do is to keep track of those decisions to keep consequences under control.

6. ARCHITETURE TECHNICAL DEBT HAS THE HIGHEST COST

OF OWNERSHIP

Why architecture? Because architectural decisions, and so, architectural technical debt, have

impact in almost each part of the system, as those technical debt items are extremely connected

in a huge net of dependencies. Obviously, architectural decisions are quite harder to change as

the system grows. So, cost in architecture accumulate as the system became harder to maintain.

7. ALL CODE MATTERS!

At first, we might think that the main source of technical debt is the code that will go in the

next release version. This may be true in some scenarios, but it is important to consider that

there are many more potential sources of technical debt. The code we write in tests can cause

technical debt, and so does the scripts written for deployment. The same happens with

configuration files or the module responsible of calling an external API. Even the code that is not

put up for release is causing technical debt – leaving it out has consequences.

8. TECHNICAL DEBT HAS NO ABSOLUTE MEASURE – NEITHER

FOR PRINCIPAL NOR INTEREST

A financial debt has usually its interest rate defined from the beginning. However, that is not

the case with technical debt. When you take a decision, you cannot know the full extent of its

consequences. That’s why most attempts to make comparisons and give measures of technical

debt will fail, the value of technical debt is given by a certain point in time and based on different

evolution scenarios, so it will rapidly change. However, these measures and comparisons do help

us to identify the most sensible parts of our project.

9. TECHNICAL DEBT DEPENDS ON THE FUTURE EVOLUTION

OF THE SYSTEM

As we stablished previously, every time we take a decision, we are establishing technical

debt. The value of that debt depends on the changes that will need to be made in order to “pay”

that technical debt. However, this will not be done when the decision is taken, but in the future

development or maintenance of the project. And when the time to make changes arrives, new

decisions arise, and then the circle starts over. And that’s why managing technical debt is not a

one-time activity, but an ongoing process.

