

Universidad de Oviedo

Distributed and big data systems

School of Computer Science

Course 2022/23

Jose E. Labra Gayo

Distributed systems

Integration styles Topologies: Hub % Spoke, Bus Broker pattern Peer-to-peer SOA Microservices Serverless

Integration styles

File transfer Shared database Remote procedure call Messaging

File transfer

An application generates a data file that is consumed by another

One of the most common solutions

Advantages

Independence between A and B Low coupling Easier debugging By checking intermediate files

File transfer

Challenges

Both applications must agree a common file format

It can increase coupling

Coordination

Once the file has been sent, the receiver could modify it \Rightarrow 2 files!

It may require manual adjustments

Shared database

Applications store their data in a shared database Advantage

- Data are always available
- Everyone has access to the same information
- Consistency
- Familiar format
 - SQL for everything

Shared database

- Challenges
 - Database schema can evolve
 - It requires a common schema for all applications
 - That can cause problems/conflicts
 - External packages are needed (common database)
 - Performance and scalability
 - Database as a bottleneck
 - Synchronization
 - Distributed databases can be problematic
 - Scalability
 - NoSQL?

Shared database

Variants

Data warehousing: Database used for data analysis and reports ETL: process based on 3 stages Extraction: Get data from heterogeneous sources Transform: Process data Load: Store data in a shared database

Remote Procedure Call (RPC)

An application calls a function from another application that could be in another machine Invocation can pass parameters call procedure Skeleton Application Obtains an answer Application Stub В answer Α Lots of applications RPC, RMI, CORBA, .Net Remoting, ... Web services, ...

Remote Procedure Call (RPC)

Advantages

Encapsulation of implementation Multiple interfaces for the same information Different representations can be offered Model familiar for developers It is similar to invoke a method

Remote Procedure Call (RPC)

Challenges

False sense of simplicity Remote procedure ≠ procedure 8 fallacies of distributed computing Synchronous procedure calls Increase application coupling

The network is reliable Latency is zero Bandwidth is infinite The network is secure Topology doesn't change There is one administrator Transport cost is zero The network is homogeneous

8 fallacies of distributed computing http://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Remote procedure call

New proposals: gRPC (<u>https://grpc.io/</u>) Google proposal High performance RPC framework http/2 transport protocol

Messaging

Multiple independent applications communicate sending messages through a channel

Asynchronous communication

Applications send messages a continue their execution

Advantages Low coupling

Application A Message channel

Applications are independent between each other Asynchronous communication

Applications continue their execution

Implementation encapsulation

The only thing exposed is the type of messages

Challenges

Implementation complexity Asynchronous communication Data transfer Adapt message formats

Different topologies

Integration topologies

Hub & Spoke Bus

Hub & Spoke

Related with Broker pattern Hub = Centralized message Broker It is in charge of integration

Each application contains its own integration machine Publish/Subscribe style

Bus

ESB - Enterprise Service Bus Defines the messaging backbone Some tasks Protocol conversion Data transformation Routing Offers an API to develop services MOM (Message Oriented Middleware)

Broker

Intermediate node that manages communication between a client and a server

Broker

Elements

Broker

Manages communication Client: Sends requests Client Proxy: *stub* Server: Returns answers Server Proxy: *skeleton* Bridge: Can connect brokers

Advantages

Separation of concerns Delegates low level communication aspects to the broker Separate maintenance Reusability Servers are independent from clients Portability Broker = low level aspects Interoperability Using *bridges*

Challenges

Performance

Adds an indirection layer Can increase coupling between components Broker = single point of failure

Broker

Applications

CORBA and distributed systems Android uses a variation of Broker pattern

Peer-to-Peer

Equal and autonomous nodes (*peers*) that communicate between them.

Elements

Computational nodes: *peers* They contain their own state and control thread Network protocol

Constraints

There is no main node All peers are equal

Peer-to-Peer

Advantages

Decentralized information and control

Fault tolerance

There is no single point of failure A failure in one peer does not compromise the whole system

Challenges

Keeping the state of the system Complexity of the protocol Bandwidth Limitations Network and protocol latency Security Detect malicious *peers*

Oviedo

Peer-to-Peer

Popular applications

Napster, BitTorrent, Gnutella, ... This architecture style is not only to share files e-Commerce (B2B) Collaborative systems Sensor networks Blockchain

Variants

. . .

Super-peers

Service Oriented Architectures

SOA WS-* REST University of Oviedo

SOA = Service Oriented Architecture Services are defined by an interface

Elements

Provider: Provides service Consumer: Does requests to the service Messages: Exchanged information Contract: Description of the functionality provided by the service Endpoint: Service location Policy: Service level agreements Security, performance, etc.

S()A

Advantages Independent of language and platform Interoperability Use of standards Low coupling Decentralized Reusability **Scalability** one-to-many vs one-to-one Partial solution for legacy systems Adding a web services layer

Challenges Performance E.g. real time systems Overkill in very homogeneous environments Security Risk of public exhibition of API to external parties **DoS** attacks Service composition and coordination

SOA Variants: WS-* REST WS-*

WS-* model = Set of specifications SOAP, WSDL, UDDI, etc.... Proposed by W3C, OASIS, WS-I, etc. Goal: Reference SOA implementation

Web Services Architecture

Software Archit

Web Services Standards

info@innoq.com · www.innoq.com

WS-*

WS-*

SOAP

Defines messages format and bindings with several protocols Initially Simple Object Access Protocol

Evolution

Developed from XML-RPC SOAP 1.0 (1999), 1.1 (2000), 1.2 (2007) Initial development by Microsoft Posterior adoption by IBM, Sun, etc. Good Industrial adoption University of Oviedo

Message format in SOAP

University of Oviedo

Example of SOAP over HTTP

```
Year
           POST /Suma/Service1.asmx HTTP/1.1
           Host: localhost
           Content-Type: text/xml; charset=utf-8
           Content-Length: longitod del mensaje
           SOAPAction: "http://tempuri.org/suma"
           <?xml version="1.0" encoding="utf-8"?>
POST?
           <soap:Envelope
                xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
           <soap:Body>
             <sum xmlns="http://tempuri.org/">
                <a>3</a>
                <b>2</b>
             </sum>
            </soap:Body>
           </soap:Envelope>
```

200

WS-*

Advantages

Specifications developed by community W3c, OASIS, etc. Industrial adoption Implementations Integral view of web services Numerous extensions Security, orchestration, choreography, etc.

Challenges

Not all specifications were mature Over-specification Lack of implementations RPC style abuse Uniform interface Sometimes, bad use of HTTP architecture Overload of GET/POST methods University of Oviedo

Applications

- Lots of applications have been using SOAP
 - Example: eBay (50mill. SOAP transactions/day)
- But...some popular web services ceased to offer SOAP support Examples: Amazon, Google, etc.

REST

REST = REpresentational State Transfer

Architectural style Source: Roy T Fielding PhD dissertation (2000) Inspired by Web architecture (HTTP/1.1)

REST - Representational State Transfer Diagram

REST

Set of constraints

Resources with uniform interface Identified by URIs Fixed set of actions: GET, PUT, POST, DELETE Resource representations are returned Stateless

REST = Architectural style

Some levels of adoption:

RESTful REST-RPC hybrid

REST as a composed style

Layers Client-Server Stateless Cached Replicated server Uniform interface

Resource identifiers (URIs) Auto-descriptive messages (MIME types) Links to other resources (HATEOAS) Code on demand (optional)

REST uniform interface

Fixed set of operations GET, PUT, POST, DELETE

Method	In databases	Function	Safe?	Idempotent?
PUT	≈Create/Update	Create/update	No	Yes
POST	≈Update	Create/	No	No
		Update children		
GET	Retrieve	Query resource info	Yes	Yes
DELETE	Delete	Delete resource	No	Yes

Safe = Does not modify server data Idempotent = The effect of executing N-times is the same as executing it once REST

Stateless client/server protocol

State handled by client

HATEOAS (Hypermedia As The Engine of Application State) Representations return URIs to available options Chaining of resource requests

Example: Student management

1.- Get list of students

GET http://example.org/student Returns list of students with each student URI 2.- Get information about an specific student GET http://example.org/student/id2324 3.- Update information of an specific student PUT http://example.org/student/id2324 REST

Advantages **Client/Server** Separation of concerns Low coupling Uniform interface Facilitates comprehension Independent development Scalability Improves answer times Less network load (cached) Less bandwidth

Challenges

REST partially adopted Just using JSON or XML Web services without contract or description **RPC style REST** Difficult to incorporate other requirements Security, transaction, composition, etc.

REST as a composed style

Pragmatic architectural style based on SOA

Elements

Services = independently deployed units Usually composed of different components User interface accesses services remotely (Internet) Database shared by those services

Constraints

Each service is independently deployed Services are usually coarse grained User interface can be divided (different topologies) Database is usually shared by each service

Advantages

- Modularity of development Services can be independently developed
- Technology diversity
- Each service can be developed using a different programming language & technology Time to market
- Several frameworks Availability Poliobility

Challenges

Scalability (database partitioning) Evolution of services Adaption to change is usually difficult Services can be monoliths Conway's law Database team User interface team

Programmers

Microservices

Applications decomposed in microservices

Microservice = small, autonomous services that work together

Each microservice = independent building and deployment block

Highly uncoupled Focus on a specific task Manage their own data

http://martinfowler.com/articles/microservices.html

Microservices Diagram

Microservices

Elements

A service + database form a deployed component A service contains several modules and its own database API layer (optional) offers a proxy or naming service

Microservices

Constraints Distributed

Bounded context:

Each service models a domain or workflow Data isolation Independency:

No mediator or orchestrator

Features/advantages

Technology heterogeneity Resilience Scalability Deployability Organizational alignment Decentralized data management Optimizing for replaceability

Microservices and heterogeneity

Each microservice can be implemented in its own programming language and technology stack Facilitates experimentation with new technologies Flexibility

Resilience

If a component of a system fails and the failure doesn't scale, the system can carry on working

In a monolithic system if a component fails, the whole system stops working

Scalability

It is possible to scale on demand specific services Monolithic systems require to scale the whole system Not all components have the same needs Microservices can be replicated as needed

Scalability

Monolithic: all functionality in a single process

...scales replicating the monolith on multiple services

Microservices: each element of functionality into a separate service

... scales distributing these services and replicating as needed

Deployability

Deploy each service independently Enables to do a change in a service and deploy it inmediately Towards continuous deployment

Organizational alignment

Inverse Conway Law maneuver

Evolve teams and organizational structure to promote the desired architecture Create teams following the modular decomposition

Cross-functional teams

Service ownership: the team owning a service is responsible for making changes and deploying it

"You build it, you run it" (Amazon)

Goal: increased autonomy and speed of delivery

Traditional applications

UI specialists

middleware specialists

DBAs

Siloed functional teams...

... lead to silod application architectures. Because Conway's Law

몸

With microservices

Cross-functional teams...

... organised around capabilities Because Conway's Law

Decentralized data management

Monolith - single database

Each team/service handles its own data

Microservices - application databases

Optimizing for replaceability

Traditional systems usually contained old legacy systems which no one wants to touch

With microservices

Less cost to replace a microservice with a better implementation Or even delete it

Challenges of microservices

Managing lots of microservices

Too much microservices = antipattern (nanoservices)

Ensure application consistency

Complexity of distributed system management

New challenges: latency, message format, load balance, fault tolerance, etc.

Testing & deployment

Operational complexity

Antipattern: distributed monolith

Microservices tangled that are not independently deployed

Structural decay (see next slide)

http://martinfowler.com/articles/microservice-trade-offs.html https://www.ufried.com/blog/microservices_fallacy_1/

Microservices structural decay

Code dependencies between services Too much shared libraries

Too much inter-service communication

Too many orchestration requests

Database coupling

Analyzing architecture (microservices) https://www.youtube.com/watch?v=U7s7Hb6GZCU

of Oviedo

University
Microservices

Self contained Systems (SCS) Architecture Separation of functionality into many independent systems <u>https://scs-architecture.org/</u> Each SCS contains logic and data

Serverless

Also known as:

- Function as a service (FaaS)
- Backend as a service (BaaS)

- Applications depend on third-party services
- Developers don't need to care about servers
 - Automatic scalability

Rich clients

Single Page Applications, Mobile apps

Examples:

AWS Lambda, Google Cloud Functions, Ms Azure Functions

<u>https://en.wikipedia.org/wiki/Serverless_computing</u> <u>https://martinfowler.com/articles/serverless.html</u>

Serverless

Elements

Client that runs functions as a services

Cloud server which provides backend as a service

Constraints

No management of server hosts Automatic scalability and provisioning based on load Costs based on precise usage

Serverless

Advantages Automatic scalability Implicit high availability Performance not defined in terms of host size/cost Costs based on precise usage Only pay for the compute you need Time to market

Challenges Vendor control Vendor lock-in Incompatibility between vendors Security **Startup latency** Integration testing Monitoring/debugging

Big data and scalable systems

MapReduce Lambda architecture Kappa architecture

MapReduce

Proposed by Google Published in 2004 Internal implementation by Google Goal: big amounts of data Lots of computational nodes Fault tolerance Write-once, read-many Style composed of: Master-slave

Batch

MapReduce

Elements

Master node: Controls execution Node table It manages replicated file system Slave nodes Execute mappers, reducers

Contain replicated data blocks

MapReduce - Scheme

Inspired by functional programming 2 components: mapper and reducer Data are divided for their processing Each data is associated with a key Transforms [(key1,value1)] to [(key2,value2)]

rsity of Oviedo

Step 1: mapper

mapper: (Key1, Value1) \rightarrow [(Key2,Value2)]

Step 2: Merge and sort

System merges and sorts intermediate results according to the keys

Step 3: Reducers

reducer: (Key2, [Value2]) \rightarrow (Key2,Value2)

MapReduce - general scheme

MapReduce - count words

MapReduce - execution environment

Execution environment is in charge of: Planning: Each job is divided in tasks Placement of data/code Each node contains its data locally Synchronization: reduce tasks must wait map phase Error and failure handling High tolerance to computational nodes failures

MapReduce - File system

Google developed a distributed file system - GFS Hadoop created HDFS

- Files are divided in chunks
- 2 node types:
 - Namenode (master), datanodes (data servers)
- Datanodes store different chunks
 - **Block replication**
- Namenode contains metadata
 - Where is each chunk
 - Direct communication between clients and datanodes

MapReduce - File system

MapReduce

Advantages **Distributed computations** Split input data **Replicated repository** Fault tolerant Hardware/software heterogeneous Large amount of data Write-once. Read-many

Challenges

Dependency on master node Non interactivity Data conversion to MapReduce Adapt input data Convert output data

MapReduce: Applications

Lots of applications:

Google, 2007, 20petabytes/day, around 100,000 mapreduce jobs/day PageRank algorithm can be implemented as MapReduce Success stories:

Automatic translation, similarity, sorting, ...

Other companies: last.fm, facebook, Yahoo!, twitter, etc.

MapReduce: Applications

Implementations

Google (internal) Hadoop (*open source*)

Libraries

. . .

Hive (Hadoop): query language inspired by SQL Pig (Hadoop): specific language that can define data flows Cascading: API that can specify distributed data flows Flume Java (Google) Dryad (Microsoft)

Lambda architecture

Handle Big Data & real time analytics Proposed by Nathan Marz, 2011

3 layers

Batch layer: precomputes all data with MapReduce Generates partial aggregate views Recomputes from all data Speed layer: real time, small window of data Generates fast real time views Serving layer: handles queries Merges the different views

Lambda architecture

Combines Real time with batch processing

The views can be simple DBs for querying

Lambda architecture

Advantages Scalability (Big data) Real time Decoupling Fault tolerant Keep all input data Reprocessing

Challenges Inherent complexity Merging views can be innacurate Losing some events

Lambda architecture

Applications Spotify, Alibaba, ...

Libraries

Apache Storm Netflix Suro project

Proposed by Jay Krepps (Apache Kafka), 2013 Handle Big data & Real time with logs Simplifies Lambda architecture Removes the batch layer Based on a distributed ordered log Replicated cluster The log can be very large

University of Oviedo

O'REILLY

Constraints

The event log is append-only

The events in the log are immutable

Stream processing can request events at any position

To handle failures or doing recomputations

16

Advantages Scalable (big data) Real time processing Simpler than lambda No batch layer Challenges Space requirements Duplication of log and DB Log compaction Ordering of events Delivery paradigms At least once, at most once (it may be lost), Exactly once

16

Applications & libraries

Apache Kafka Apache Samza Spark Streaming LinkedIn

10

End of presentation