
Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Software taxonomies

Patterns, styles, tactics,...

Jose E. Labra GayoCourse 2022/2023

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Software taxonomies

Building & Maintenance

Configuration management

Modularity

Decomposition at building time

Runtime

Components and connectors

Integration

Allocation

Packaging, distribution, deployment

Business and enterprise environment

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Software construction & maintenance

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Software construction & maintenance

Configuration management

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Software: product or service

Software as a Product (SaaP):

Software deliverable

Commercial model: software is sold to clients

Software distributed or downloaded

Example: Microsoft Office

Software as a Service (SaaS):

Software deployed

Commercial model: clients subscribe to it

Software usually available at some URL

Example: Google docs

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Software configuration management

Managing the evolution of software

Manages all aspects of software construction

Especially, how software evolves and changes

Aspects:

Identifying baselines and configuration items

Baseline: A work product subject to management

It contains configuration items: documents, code files, etc...

Configuration control & auditing

Version control systems

Building management and automation

Teamwork

Defect and issues tracking

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Software construction

Overview of methodologies

Traditional, iterative, agile

Construction tools

Languages, tools, etc.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Incremental piecemeal

Development by need

Codification without following the architecture

Throw-away software

Budget constraints

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Software development life cycle (SDLC)

Waterfall model identified as antipattern in 1970s

Waterfall

Requirements

Design

Implementation

Verification

Maintenance

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o V Model

Requirements

Analysis

Design

Object
Design

Unit
Testing

Integration
Testing

System
Testing

Aceptance
Testing

Time

Detail
Level

Low

High Implementation

Project
Definition

Project
Test and

Integration

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Big Design Up Front

Anti-pattern of traditional models

Too much documentation that nobody reads

Documentation different from developed system

Architecture degradation

Software implemented but unused

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Iterative Models

Based on Prototypes

Risk assessment after each iteration

Initial
Planning

Planning

Requirements Analysis &
Design

Implementation

Deployment

Testing
Evaluation

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Agile methodologies

Lots of variants
RAD (www.dsdm.org, 95)

SCRUM (Sutherland & Schwaber, 95)

XP - eXtreme Programming (Beck, 99)

Feature driven development (DeLuca, 99)

Adaptive software development (Highsmith, 00)

Lean Development (Poppendieck, 03)

Crystal Clear (Cockburn, 04)

Agile Unified Process (Ambler, 05)

. . .

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Agile methods

Agile Manifesto (www.agilemanifesto.org)

Individuals and
interactions

over
Processes and

Tools

Working
Software

Comprehensive
Documentation

over

Customer
Collaboration

over Contract
Negotiation

Responding
to change

over Following a
Plan

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Agile methods

Feedback

Changes of code are OK during development

Minimize risk

Software in short intervals

Iterations of days

Each iteration takes all the development cycle

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Some agile principles (XP)

1. Adapt to change

2. Testing

3. Pair programming

4. Refactoring

5. Simple design

6. Collective code ownership

7. Continuous integration

8. On-site customer

9. Small releases

10.Sustainable pace

11.Coding standards

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Adopt change

After each iteration, update plans

Requirements through user stories

Short descriptions (size of a card)

Goals ordered by usnig according to priority

Risk and resources estimated by developers

User stories = acceptance testing

Welcome changing requirements

Original plan

Current plan

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o TDD - Test driven development

Write a test before coding

Initially, code will fail

Goal: pass the test

Result:

Automated set of tests

Easier refactoring

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Different types of testing

Unit testing
Check each unit separately

Integration testing
Smoke testing

Acceptance testing
Check with user stories

Performance/capacity testing:
Load testing

Regression testing
Check that new changes don’t introduce new bugs, or regressions

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Types of testing

Functional Acceptance
Testing

Showcases
Usability testing

Exploratory testing

Nonfunctional
Acceptance testing

(capacity, security,…)

Unit testing
Integration testing

System testing

Automated Manual

Automated Manual/ Automated

S
u

p
p

o
rt

 p
ro

g
ra

m
m

in
g C

ritiq
u

e p
ro

je
ct

Business facing

Technology facing

Source: Continuous delivery, J Humble, D. Farley, 2010

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Acceptance testing

Behavior-driven development (BDD)

Tests come from user stories

They can be written collaboratively with the client

Tools: Cucumber, JBehave, Specs2,...

Tests act as contracts

Can also be used to measure progress

Feature: Buscar cursos
Para mejorar el uso de los cursos
Los estudiantes deberían ser capaces de buscar cursos

Scenario: Búsqueda por asunto
Given hay 240 cursos que no tienen el asunto “Biología”
And hay 2 cursos A001, B205 que tienen el asunto “Biología"
When Yo busco el asunto “Biología"
Then Yo debería ver los cursos:

| Código |
| A001 |
| B205 |

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Testing: FIRST Principles

F - Fast

Execution of (subsets of) tests must be quick

I - Independent:

No tests depend on others

R - Repeatable:

If tests are run N times, the result is the same

S - Self-checking

Test can automatically detect if passed

T - Timely

Tests are written at the same time (or before) code

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Test doubles

Dummy objects:

Objects that are passed but not used

Fake objects: Contain a partial implementation.

Stubs: contain specific answers to some requests

Spies: stubs that record information for debugging

Mocks: mimic the behavior of the real object

Mocks may contain assertions about the order/number of times methods are

called

Fixtures: Tools that support tests

Testing databases, some files, etc.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Environments

A staging environment is usually used also

Development
environment

Testing
Environments

Production
Environment

Testing
Server

Integration
Server

Version
Control

Production
Server

Server farm

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Pair programming & Code reviews

2 software engineers work together

Driver manages keyboard and creates implementation

Observer identifies failures and gives ideas

Roles are exchanged after some time

Pull requests: Before accepting changes, code can be reviewed

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Simplicity

Favor Simple design

Reaction to Big Design Up Front

Obtain the simpler design that works

Automated documentation

JavaDoc and similar tools

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Refactoring

Improve design without changing functionality

Simplify code (eliminate redundant code)

Search new opportunities for abstraction

Regression testing

Based on the test-suite

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Collective ownership of code

Code belongs to the project, not to some engineer

Engineers must be able to browse and modify any part of the code

Even if they didn't wrote it

Avoid code fragments that only one person can modify

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Continuous Integration

Frequently integrating one's new or changed code with the existing

code repository

Running all unit and integration tests

Merge all developer working copies

Goals

Help Test Driven Development

Maintain all programmers code up to date

Avoid integration hell

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Continuous Integration

Best practices:
Maintain code repository

Automate the build

Make the build self testing

Everyone commits to the baseline

Every commit should be built

Keep the build fast

Test in a clone of the production environment

Make it easy to get the latest deliverables

Everyone can see the results of the latest build

Automate deployment

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Continuous integration

Continuous integration tools

Hudson, Jenkins, Travis, Bamboo, Github Actions

Continuous
Integration

Web
Interface

Reports

checkout/commit

Central Code
repository

Development
Team

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o On-place customer

Customer available to clarify user stories and help taking critical

business decisions

Advantages

Developers don't do guesses

Developers don't have to wait for decisions

Improves communication

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Continous delivery

Small releases

Small enough while offering value to the user

Obtain feedback soon from client

Delivery models

Try to release something every night/week...

Continuous and automated delivery

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Sustainable pace

Avoid extra-work loads

40h/week = 40h/week

Tired programmers write bad code

It will slow the development at long time

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Clean code & code conventions

Facilitate code refactoring by other people

Use good practices

Code styles and guidelines

Avoid code smells

software craftmanship manifest

Clean Code (Robert C. Martin)

Source: Clean Code. Robert Martin

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Some agile methods

Variants

Scrum

Project/people management

Divide work in sprints

15' daily meetings

Product Backlog

Kanban

Lean model

Just in Time Development

Limit workloads

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Configuration Management

Different software versions

New or different functionalities

Issues and bugs management

New execution environments

Configuration management

Manage software evolution

System changes = team activities

Imply cost and effort

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Version control

Systems that manage different code versions

Be able to Access all the system versions

Easy to rollback

Differences between versions

Collaborative development

Branch management

Metadata

Author of a version, update date, who to blame, etc.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Baseline

Baseline: Software which is the object of configuration management

Version
1.0

Windows

Version
1.5

Sun

Version
1.5

Linux

Version
2.0

Windows

Version
2.5 desktop

Linux

Version
2.5 desktop

Servidor

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Releases and versions

Version: instance of a system which has a different functionality to

other instances

Release (deliverable): instance of a system which is distributed to

external people outside to development team.

It can be seen as a final product at some point

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Version naming - some conventions

Pre-alpha

Before testing

Alpha

During testing

Beta (or prototype)

Testing made by some users

Beta-tester: user that does the testing

Release-candidate

Beta version that could become final product

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Other schema namings

Using some attributes

Date, creator, language, client, state,...

Recognizable Names
Ganimede, Galileo, Helios, Indigo, Juno,...

Precise Pangolin, Quantal Quetzal,...

Semantic Versioning (http://semver.org)
MAJOR.MINOR.PATCH (2.3.5)

MAJOR: changes incompatible with previous versions

MINOR: new functionality compatible with previous versions

PATCH: Bugfix compatible with previous versions

Version 0 (inestable)

Pre-releases (names added at the end): 2.3.5-alpha

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Publishing releases

A release implies functionality changes

Planning

Publishing a release has costs

Usually, current users don't want new releases

External factors:

Marketing, clients, hardware, ...

Agile model: frequent releases

Continuous integration minimizes risk

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Publishing Releases

A release is more than just software
Configuration files

Some needed data files

Installation programs

Documentation

Publicity and packaging

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Continuous delivery

Continuous delivery
Frequent releases to obtain feedback as soon as possible

TDD & continuous integration

Deployment pipeline

Advantages:
Embrace change

Minimize integration risks

Wabi-sabi philosophy
Accept imperfection
Software that is not finnished: Good enough

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o DevOps

Merge development and operations

Cultural change where the same team participates in:

Code: Development and code review, continuous integration

Build: Version control, building and integration

Test

Package: Artifact management

Release: version automation

Configuration and management

Monitorization: performance, user experience

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Construction languages

Configuration languages

Resource definitions (Json, XML, Turtle)

Examples: .travis.yml, package.json, pom.xml

Scripting languages

Shell/batch scripts

Programming languages

Examples: Java, Javascript,...

Visual languages

Examples: scratch, blender, ...

Formal

Examples: B-trees, Z language, OCL, ...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Program
Coding aspects

Naming conventions

Important for other programmers, maintainers...

Classes, types, variables, named constants, ...

Error handling

Source code organization

Packages, folders, ...

Dependencies

Libraries imported

Code documentation

Javadocs, jsdoc...

Programmer

Program

Computer

Other programmers
& maintainers

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Testing

Unit testing

Integration testing

Load testing

Regression testing

. . .

Best practice:

Separate testing code and dependencies from production code

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Construction for reuse

Parameterization

Add parameters

Common error: magical numbers in code

Configuration/resource files

Conditional compilation

Encapsulation

Separate interface from implementation

Common error: internal parts public in libraries

Packaging

Common error: manual tasks for packaging

Documentation

API documentation

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Construction with reuse

Selection of reusable units

Externally developed components (COTS, FOSS)

Handling dependencies

<See later>

Handling updates

What happens when other libraries are updated?

Legal issues

Can I really use that library?

For commercial software?

Be careful with GNU libraries

Is the library well maintained?

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Construction tools

Text editors

vi, emacs, Visual Studio Code, Sublime,....

Integrated Development Environments (IDEs)

Examples: IntelliJ, Eclipse

Graphical User Interface (GUI) builders

Android Studio UI Editor, QtEditor,...

Quality assurance (QA) tools

Test, analysis, ...<See next slide>

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Software Quality Assurance

Tests

xUnit, test frameworks (mocha)

Assertion languages (chai)

Test coverage tools

Assertions

Pre-conditions asserted on methods

Inspections & code reviews

Pull requests with code reviews

Code Analysis tools

<See next slide>

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Code analysis tools

Static vs dynamic code analysis

Without running the code (or at runtime)

Examples: PMD, SonarCube,... (Codacy)

Debuggers

Interactive vs static, Tracers & logging

Profilers

Information about resource usage
Memory, CPU, method calls, etc.

Test coverage tools

Report which lines of code have been run during tests

Program slicing

Program fragment (slice) that has been run
Examples: CodeSurfer, Indus-kaveri,...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Version control

Definitions

Repository: where changes are stored

Baseline: Initial version

Delta: changes from one version to other

Trunk (master): Main branch in a system

Branch: deviation from main branch

Tag: Marks a line of versions

1

Baseline

4

Trunk

2

3

Branchs

5

6

9

7

T1

T2

8

10

Tags merge

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Version control

Definitions
Checkout: Working Local copy from a given

branch

Commit: Introduce current changes in the control

version system.

Merge: Combine two sets of changes

Branching styles: by feature, by team, by version

1

Baseline

4

Trunk

2

3

Branchs

5

6

9

7

T1

T2

8

10

Tags
merge

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Version control

2 types

Centralized

Centralized repository for all the code

Centralized administration

CVS, Subversion, ...

Distributed

Each user has its own repository

Git, Mercurial

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Git

Designed by Linus Torvalds (Linux), 2005

Goals:

Applications with large number of source code files

Efficiency

Distributed work

Each development has its own repository

Local copy of all the changes history

It is possible to do commits even without internet connection

Support for non-lineal development (branching)

More information:
http://rogerdudler.github.com/git-guide/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Local components

3 local components:
Local working directory

Index (stage area). Also called cache

Project history: Stores versions or commits

HEAD (most recent version)

Project
History

Commits

commit
add

rm

HEAD
Local

working
directory

Index
stage
area

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Remote repositories

Local
working
directory

History
Commits

Index
stage
area

Remote
repository
origin

push

clone
fetch
pull

commit
add

rm

Local
Machine

HEAD

Connect with remote repositories

origin = initial

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Branches

Git facilitates branch management

master = initial branch

Operations:

Create branches (branch)

Change branch (checkout)

Combine (merge)

Tag branches (tag)

1

Baseline

4

Trunk

2

3

Branchs

5

6

9

7

T1

T2

8

10

Tags
merge

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Branching patterns

Git-flow

Develop branch as mainline

Github-flow

Everything in master is deployable

No hotfix branch

Promotes pull-requests

Trunk-based development

Everything in trunk (master)

Short-lived feature branching

masterdevelop hotfix-1feature-1feature-2

0.1

1.0

0.2

tags

Branches

https://martinfowler.com/articles/branching-patterns.html

https://martinfowler.com/articles/branching-patterns.html

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Dependency management

Library: Collection of functionalities used by the system that is being

developed

System depends on that library

Library can depend on other libraries

Library can evolve

Incompatible versions appear

Dependency graph

Mozilla Firefox dependency graph
Source: The purely functional deployment model. E. Dolstra (PhdThesis, 2006)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Dependency graph

Graph G = (V,E) where

V = Vertex (components/packages)

E = Edges (u,v) that indicate that u depends on v

CCD metric (cumulative component dependency)

Sum of every component dependency

Each component depends on itself

A

B C

D E G

In the example:
CCD=7+3+4+1+1+1+1=18

F

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Cyclic dependencies problem

The dependency graph should not have cycles

Adding a cycle can damage CCD

Example:

CCD = 7+7+7+1+7+1+1=31

A

B C

D E GF

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Dependency management

Different models

Local installation: libraries are installed for all the system

Example: Ruby Gems

Embed external libraries in the system (version control)

Ensures a correct version

External link

External repository that contains the libraries

Depends on Internet and on library evolution

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Build automation

Tools that automate building and deployment

Organize different tasks

Compile, package, install, deploy, etc.

Dependencies between tasks

Must check:

Run all prerequisites

Run them once Initialize

Prepare
Test
data

Compile
Source

code

Compile
Test
code

Run
tests

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Build automation

Automate building tasks

Some quality attributes:
Correctness:

Avoid mistakes (minimize "bad builds")

Eliminate repetitive and redundant tasks

Simplicity: Handle complexity

Automation & releasability
Have history of builds and releases

Continuous integration

Cost
Save time & money

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o When to build?

On-demand
A user running a script at the command line

Scheduled
Automatically run at certain hours

Continuous integration server

Example: nightly builds

Triggered
At every commit to a version control system

Continuous integration server linked to version control system

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Build Automation Tools

Makefile (C world)

Ant (Java)

Maven (Java)

SBT (Scala, JVM languages)

Gradle (Groovy, JVM languages)

rake (Ruby)

npm, grunt, gulp (Javascript)

cargo (Rust)

etc.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Automate building

make: Included in Unix

Product oriented

Declarative language based on rules

When the Project is complex, configuration files

can be difficult to manage/debug

Several versions: BSD, GNU, Microsoft

Very popular in C, C++, etc.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Automate building

ant: Java Platform

Task oriented

XML syntax (build.xml)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Automate building

maven: Java Platform

Convention over configuration

Manage project lifecycle

Dependency management

XML syntax (pom.xml)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Automate building

Embedded languages

Domain specific languages embedded in higher level ones

Great versatility

Examples:

gradle (Groovy)

sbt (Scala)

rake (Ruby)

Buildr (Ruby)

gulp (Javascript)

…

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o New tools

Pants (Foursquare, twitter)

https://pantsbuild.github.io/

Bazel (Google)

http://bazel.io/

Buck (Facebook)

https://buckbuild.com/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Maven

Build automation tool

Describes how software is built

Describes software dependencies

Principle: Convention over configuration

Jason van Zyl
Creator of Maven

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Maven

Typical development phases:
clean, compile, build, test, package, install, deploy

Module identification

3 coordinates: Group, Artifact, Version

Dependencies between modules

Configuration: XML file (Project Object Model)

pom.xml

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Maven

Artifact repositories

Store different types of artifacts

JAR, EAR, WAR, ZIP, plugins, etc.

Every interaction is made through the repository

No relative paths

Share modules between development teams

Local Artifact
Repository

Remote
Artifact

Repository

<user>/.m2/repository Maven Central

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Maven Central

Public repository of projects

Over 1 mill GAV

≈ 3000 new projects each month (GA)

≈ 30000 new versions each month(GAV)*

http://search.maven.org/

* Source: http://takari.github.io/javaone2015/still-rocking-it-maven.html

Other repositories:
https://bintray.com/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o POM - Project Object Model

XML syntax

Describes a project
Name and version

Artifact type (jar, pom, ...)

Source code localizations

Dependencies

Plugins

Profiles
Alternative build configurations

Inheritance structure

Reference: https://maven.apache.org/pom.html

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o POM - Project Object Model

Inheritance structure

Super POM

Maven's default POM

All POMs extend the Super POM unless explicitly said

parent

Declares the parent POM

Dependencies and properties are combined

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Maven

Project identification

GAV (Group, Artifact, Version)

Group: grouping identifier

Artifact: Project name

Version: Format {Major}.{Minor}.{Maintenance}

It is possible to add "-SNAPSHOT" (in development)

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>es.uniovi.asw</groupId>
<artifactId>censusesN</artifactId>
<version>0.0.1</version>
<name>censusesN</name>
...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Maven

Folder structure
Maven uses a conventional structure

src/main

src/main/java

src/main/webapp

src/main/resources

src/test/

src/test/java

src/test/resources

. . .

Output directory:
target

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Maven Build life cycle

3 built-in lifecycles

default

Project deployment

clean

Project cleaning

site

Project's site documentation

Each life cycle has some specific phases

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o clean

Clean compiled code and other stuff

3 phases

pre-clean

clean

post-clean

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o default lifecycle

Compilation, testing and deploying

Some phases
validate
initialize
generate-sources
generate-resources
compile
test-compile
test
package
integration-test
verify
install
deploy

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o site lifecycle

Generates Project's site documentation

Phases

pre-site
site
post-site
site-deploy

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Maven

Automatic dependency management

GAV identification

Scopes

compile

test

provide

Type

jar, pom, war,...

...
<dependency>
<groupId>commons-cli</groupId>
<artifactId>commons-cli</artifactId>
<version>1.3</version>
</dependency>
...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Maven

Automatic dependency management

Dependencies are downloaded

Stored in a local repository

We can create intermediate repositories (proxies)

Examples: common artifacts for some company

Transitivity

A depends on B

B depends on C

 If a system depends on A

Both B and C are downloaded

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Maven modules: aggregation

Big projects can be decomposed in subprojects

Each Project creates one artifact

Contains its own pom.xml

Parent Project groups modules

<project>

...

<packaging>pom</packaging>

<modules>

<module>extract</module>

<module>game</module>

</modules>

</project>

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Maven Plugins

Maven architecture based on plugins

2 types of plugins
build

reporting

List of plugins: https://maven.apache.org/plugins/index.html

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o Maven

Other phases and plugins
archetype:generate - Generates Project archetype

eclipse:eclipse - Generates eclipse project

site - Generates Project web site

site:run - Generates Project web site and starts server

javadoc:javadoc - Generates documentation

cobertura:cobertura - Reports code executed during tests

checkstyle:checkstyle - Check coding style

spring-boot:run - Run a spring application

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o npm

Node.js package manager

Initially create by Isaac Schlueter

Later became Npm inc.

Default package manager for NodeJs

Manages dependencies

Allows scripts for common tasks

Software registry

Public or paid packages

Configuration file: package.json

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o npm configuration: package.json

Configuration file: package.json

npm init creates a simple skeleton

Fields: {

"name": "...mandatory...",

"version": "...mandatory...",

"description": "...optional...",

"keywords": "...",

"repository": {... },

"author": "...",

"license": "...",

"bugs": {...},

"homepage": "http://. . .",

"main": "index.js",

"devDependencies": { ... },

"dependencies": { ... }

"scripts": { "test": " ... " },

"bin": {...},

}

Note: Yeoman provides fully featured scaffolding

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o npm packages

Repository: http://npmjs.org

Installing packages:

2 options:

Local

npm install <packageName> --save (--save-dev)

Global

npm install -g <packageName>

http://npmjs.org/

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o npm dependencies

Dependency management

Local packages are cached at node_modules folder

Access to modules through: require('...')

Global packages (installed with --global option)

Cached at: ~/.npm folder

Scoped packages marked by @

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o npm commands and scripts

Npm contains lots of commands

start  node server.js

test  node server.js

ls lists installed packages

...

Custom scripts:

run-script <name>

More complex tasks in NodeJs

Gulp, Grunt

https://docs.npmjs.com/cli-documentation/

https://docs.npmjs.com/cli-documentation/

