

Software architect role and stakeholders

Role of software architect

Role of software architect

Expectations of an architect

Make architectural decisions

Continually analyse the architecture

Keep current with existing trends

Ensure compliance with existing decisions

Diverse exposure and experience

Have business domain knowledge

Possess interpersonal skills

Understand and navigate politics

Make architectural decisions

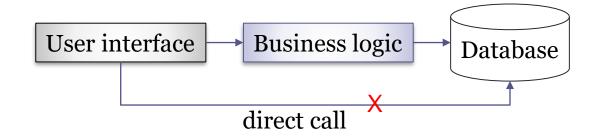
Define architecture decisions and design principles Architect should guide technology decisions Keep decision records Analyse pros and cons

Continually analyse the architecture

Continually analyse the architecture and technology Being responsible for technical success of project Be aware of structural decay Strive for consistency

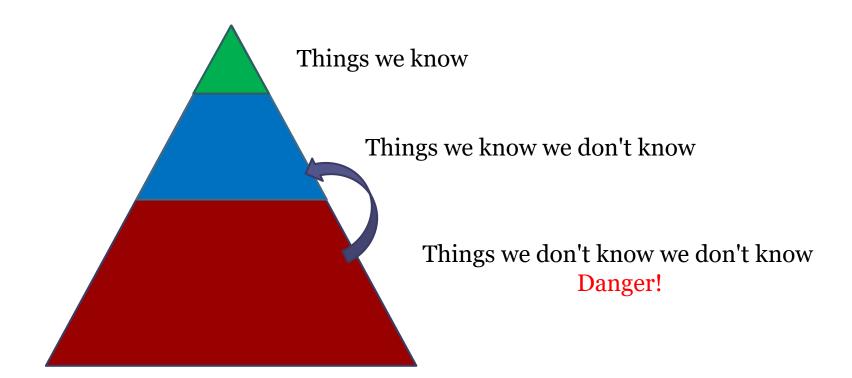
Organize the code into packages, folders, modules, ...

Define boundaries, guidelines, principles,...


Include testing and release environments into projects

Ensure compliance with existing decisions

Architects usually impose some constraints Example:


Database access from User Interface constraint Developers could bypass it

Keep current with existing trends

Be aware of latest technology and industry trends

Decisions made by architect = long lasting and costly Good architects know what they know and what they don't know

Diverse exposure and experience

Have exposure to multiple and diverse technologies, frameworks, platforms, environments,...

It doesn't mean being an expert in each of them ...but at least be familiar with varying technologies

Technical breadth better than technical depth

Business domain knowledge

Architect expected to have certain level of business domain knowledge

Understand business problem, goals and requirements

Effectively communicate with executives and business users using
the domain language

Possess interpersonal skills

Software architect = leader
Teamwork and leadership skills
Technical leadership

Be inclusive and collaborate

Help developers understand the big picture

Get hands-on

Be engaged in the delivery

Low-level understanding

Coding as part of the role

Code reviews and mentorship

Understand and navigate politics

Understand the political climate of the enterprise and be able to navigate the politics

Architectural decisions affect stakeholders

Product owners, project managers, business stakeholders, developers...

Almost every decision an architect makes will be challenged

Negotiation skills are required

Present and defend the architecture

The software architect's elevator

Communication with the different layers

Main concerns of software architects

Specify quality attributes

How to do something

Determine trade-offs and decisions

Why to do something

Contain entropy

Define standards, conventions, toolsets for teams

Working in teams

Software engineering is a team endeavour

Social interactions

Architect personalities

Team topologies

Team size

Hiding & the genius myth

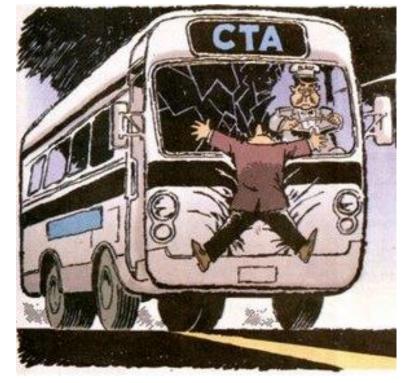
Insecurity

People are afraid of others judging their work in progress Attempts to hide code

The genius myth:

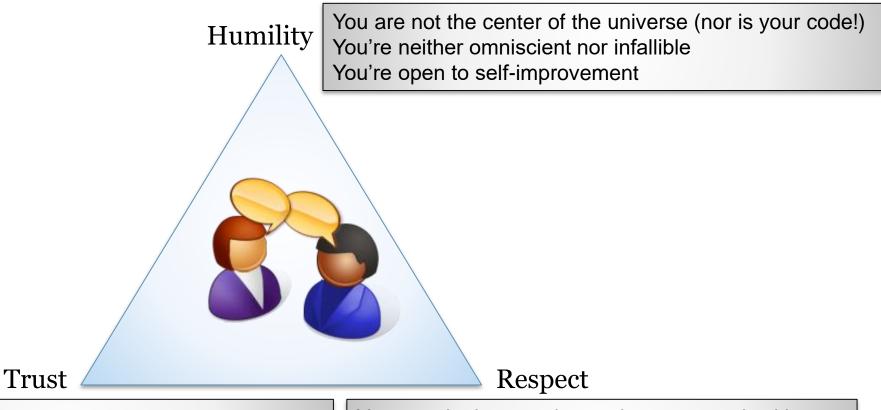
Tendency to ascribe success of team to a person Examples: Bill Gates, Linus Torvalds, etc.

Hiding considered harmful Working alone increases risk


The Bus factor*

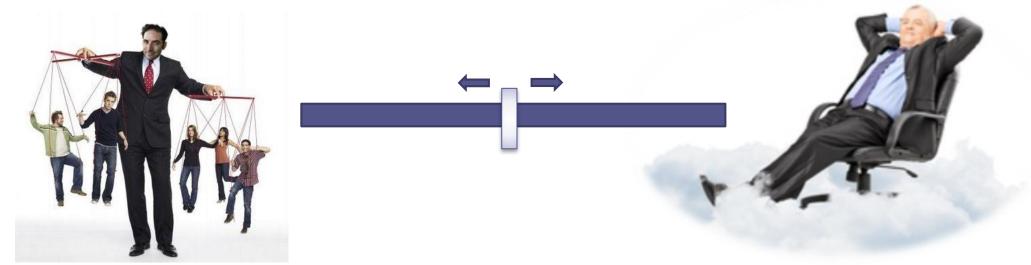
Number of people that need to get hit by a bus before your project is completely doomed

Unpredictable life events can happen


Teamwork is mandatory to reduce risk

Ensure to have at least 2 people Good documentation

*Term coined at Google (Software Engineering at Google, 2020)


3 pillars of social interaction

You believe others are competent You believe others will do the right thing You're OK with letting them drive when appropriate You genuinely care about others you work with You treat them kindly You appreciate their abilities and accomplishments

Architect personalities

Effective architect = trade-off between control freak and armchair architect

Control freak

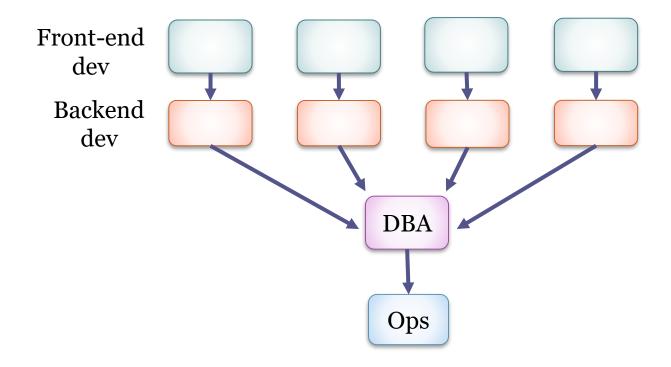
Participate in all decisions Decisions too fine-grained and low level Participate in code development (bottleneck) Armchair architect
Disconnected from development teams
Never around (jump from project to project)
Only participate in initial diagrams

Team topologies

Team topologies affect the systems

Communication structures

Team dynamics


Team size

Traditional team topology

Traditional work allocation:

Existing teams are required for every new project

Example: 4 teams: front-end, back-end, DBA and Ops

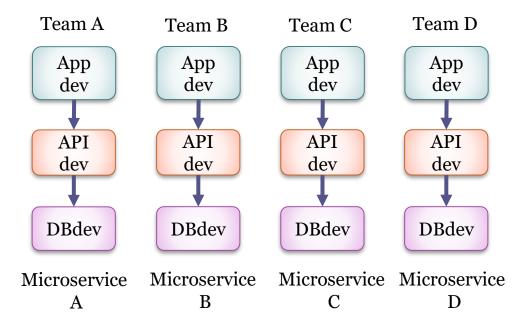
Conway's law

Organizations which design systems ... are constrained to produce designs which are copies of the communication structures of these organizations

[M. Conway, 1967]

Corollary:

The best structure for a system is influenced by the social structure of the organization


Example:

If there are 3 teams (design, programming, database), the system will naturally have 3 modules

Inverse Conway Maneuver

Evolve teams and organizational structure to promote the desired architecture

Create teams after the modular decomposition Example with microservices

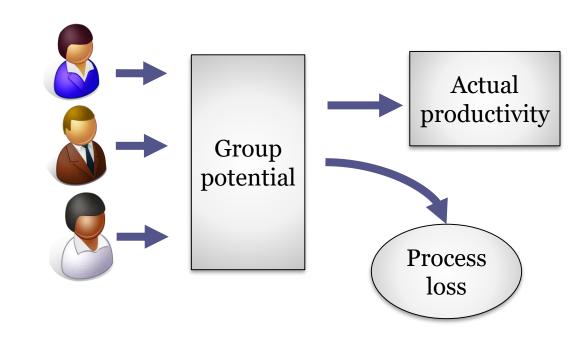
Team size

Efficient team size can influence project success Some warnings to be aware of:

Process loss

Pluralistic ignorance

Diffusion of responsibility



2-pizza rule: "if you can't feed a team with two pizzas, it's too large", J. Bezos

Process loss

Difference between group potential and actual productivity

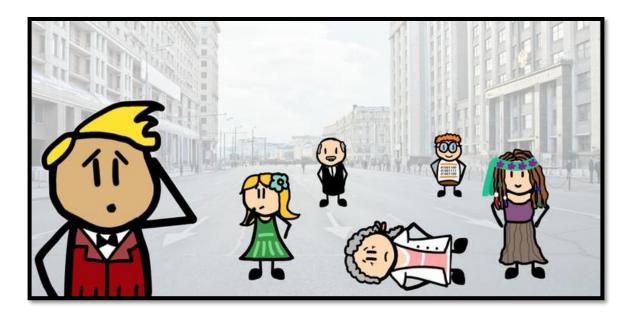
Some reasons: communication overhead, meetings,...

Brooks's law. Adding manpower to a late software project makes it later

Pluralistic ignorance

When everybody publicly agree to something, but privately reject it because they think they are missing something obvious

Some architect decisions are not confronted



Emperor's new clothes fable

Diffusion of responsibility

Bigger team size negatively impact communication Some signs:

Confusion about who is responsible for what Things getting dropped

Leveraging checklists

Checklists = effective means to ensure some tasks are covered or addressed

Error-prone tasks/steps that are frequently missed Make development teams more effective

Hawthorne effect:

If people know they are being observed their behaviour changes and will generally do the right thing

Stakeholders

Stakeholders

All parties that participate in the development or are affected by the system

Can be person, a role or organization Typically have different concerns

Sometimes contradictory

It's necessary to

Understand nature, source and priority of concerns Identify and actively engage with them Solicit their needs and expectations

Stakeholders (explicitly or implicitly) drive the whole shape and direction of the architecture to serve their needs

Identifying stakeholders

All individuals, roles, organizations that:

Should know the architecture

Have to be convinced of the architecture

Have to work with the architecture or with code

Need the architecture documentation for their work

Have to come up with decisions about the system or its development

Identifying stakeholders

Internal

Analyst

Designer

Business manager

Developer

Product owner

Auditor

UX designer

Project manager

. .

External

Customer

End users

Auditor

Public authority

Suppliers

External service providers

. . .

Stakeholders' expectations

Expectations help to:

Identify specific needs

Goal: achieve greater satisfaction of target audience

Avoid unnecessary work

Avoid documenting irrelevant things

Typical format:

Role/name	Contact	Expectations

Stakeholder map

Show people/roles involved or affected by system

Include relationships/interactions

Example for a procurement automation system (*)

(*) Source: Design it!, M. Keeling

Business goal statements

Human-centered business goals
Usually between 3-5
Structure

Subject/stakeholder

Outcome: express the need as a measurable How will the world change if system is successful?

Context

Some insight about the goal

Subject	Outcome	Context
Mayor of the city	Reduce costs 30%	Avoid making budget cuts to essential services
Office of management	Review historical procurement data for the last 10 years	Historic data can help predict future contracts