
Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Software Architecture

Basic definitions

Jose E. Labra GayoCourse 2022/23

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Contents

Definitions about Software Architecture

About software architecture

Stakeholders

Quality attributes

Constraints

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

What is architecture?

Ethimologically, from greek:

Architecture = ἀρχιτέκτων

ἀρχι- "chief"

τέκτων "creator"

Architecture = Process and the product of planning, designing, and

constructing buildings or other structures.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Vitruvius, "De architectura"

Written between 30 to 15 BC

3 pillars of good buildings

Utilitas (usefulness):

Be useful and function well for the people using it.

Firmitas (durability):

Stand up robustly and remain in good condition

Venustas (elegance/beauty):

It should delight people

Can be applied to software systems

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

What is software architecture? (1)

Architecture [ISO/IEC/IEEE 42010:2011, 3.2]

Fundamental concepts or properties of a system in its environment

embodied in its elements, relationships, and in the principles of its

design and evolution

Architecture description

Explicit work product expressing an architecture of a system, usually

via models, text and graphics.

Architecting:

Process of creating an architecture

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

What is Software architecture? (2)

Fundamental structures of a system...

...which comprise:

- software elements

- relations among them

- properties of both.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Architecture vs Design

The distinction is not always clear-cut

Architecture focuses more on:

High level structure of a software system

Significant design decisions of a system that...

....if you have to change them High cost

"All architecture is design but not all design is architecture"

G. Booch

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Buildings architecture vs software architecture

Complex systems

Developed by teams/organizations

Used by people

Both employ styles, patterns, tactics...

And are affected by trends

Some similarities

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Buildings architecture vs software architecture

Some differences

More stable environment

Physical product/service

Physical limits, difficult to change

Long tradition and history

Great examples to show

Environment changes very fast

Virtual product/service

No physical limits, easier to change

Relatively new discipline

and we can learn a lot from others

Buildings architecture Software architecture

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Other similar disciplines

Civil engineering

Mechanical engineering

Aeronautics

...

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Other architectures

Business architecture

Enterprise architecture

Systems architecture

Information architecture

Data architecture

. . .

Common things about all: Structure and vision

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Benefits of software architecture

Provide a clear vision and roadmap for the team

Technical leadership and better coordination

Answer questions relating to significant decisions
Quality attributes, constraints and other cross-cutting concerns.

Identifying and mitigating risk.

Consistency of approach and standards
Leading to a well structured codebase.

Firm foundations for the product being built.

A structure to communicate the solution
At different levels of abstraction to different audiences.

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Challenges of software architecture

Architects at the ivory tower

Lack of communication

Centralization of all decisions

Bottleneck

Taking too many decisions

Deferring decisions may be better than reversing them

Big design up front

Too much unneeded diagrams and docs

Delays caused by architecting process

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Agile software architecture

Architecture that can react to its environment

Adapting to ever changing requirements

Also known as evolutionary architectures

Good architecture enables agility

Better understanding of trade-offs and decisions

Common anti-pattern:

Adopting agile software development techniques that create

non-agile software architectures

Caused by too much focus on delivering functionality

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Laws of software architecture (*)

1st law:

Everything in software architecture is a trade-off

2nd law:

Why is more important than how

Question everything

Document architecture decisions

Corollary 1:
If an architect thinks he has found something that is not a trade-off,
more likely he just haven't identified the trade-off yet

Corollary 2:
All meaningful decisions have downsides

(*) Fundamentals of Software Architecture, M. Richards, N. Ford

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Architecture design

Problem domain Solution domain

Design activity

Design
Objectives

Functional
requirements

Quality
attributes

Constraints

Concerns

Architecture
drivers (inputs)

Architect

Design of the
architecture

(output)

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Architeture drivers

Inputs of the software architecture process

Design objectives

Functional requirements

Quality attributes

Constraints

Concerns

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Design objectives

What are the business goals?

Why you are designing that software?

Some examples:

Pre-sales proposal: rapid design of an initial solution in order to

produce an estimate

Custom system with established time and costs which may not

evolve much once released

New increment or release of a continuously evolving system

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Functional requirements

Functionality that supports the business goals

List of requirements as use cases or user stories

User storiesUse cases

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Quality attributes

Measurable features of interest to users/developers

Also known as non-functional requirements

Performance, availability, modifiability, testability,…

Also known as -ilities

Can be specified with scenarios

Stimulus-response technique
“If an internal failure occurs during normal operation, the system

resumes operation in less than 30seconds, and no data is lost”

ISO 25010: list of some non-functional requirements

List: https://en.wikipedia.org/wiki/List_of_system_quality_attributes

https://en.wikipedia.org/wiki/List_of_system_quality_attributes

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Quality attributes

Quality attributes determine most architectural design
decisions
If the only concern is functionality, a monolithic system

would suffice

However, it is quite common to see:
Redundancy structures to increase reliability

Concurrency to increase perfomance

Layers for modifiability

…

Quality attributes must be prioritized
By the client to consider system’s success

By the architect to consider technical risk

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Constraints

Pre-specified design decisions

Very little software has total freedom

May be technical or organizational

May originate from the customer but also from the development

organization

Usually limit the alternatives that can be considered for particular

design decisions

Examples:

Frameworks, programming languages, DBMS,…

They can act as “friends”

Identifying them can avoid pointless disagreements

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Concerns

Design decisions that should be made

Even if they are not stated explicitly

Examples:

Input validation

Exception management and logging

Data migration and backup

Code styles…

…

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Creativity vs Method

Creativity
Fun
Risk
Can offer new solutions
Can be unnecessary

Method
Efficient in familiar domains
Predictable result
Not always the best solution
Proven quality techniques

Architect

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Types of systems

Greenfield systems in novel domains

E.g. Google, WhatsApp,…

Less well known domains, more innovative

Greenfield systems in mature domains

E.g. “traditional” enterprise applications,

standard mobile apps

Well known domain, less innovative

Brownfield domains

Changes to existing system

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Software architect

Discipline evolves

Architect must be aware of

New development techniques

Styles and patterns

Best tool = experience (no silver bullet)

Self experience

Experience from community

Architect

Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

U
n

iv
e

r
s
it

y
o

f
O

v
ie

d
o

Role of software architect

Principles
Patterns

Styles
Anti-patterns

Tactics

Software
ArchitectCommunity

Experience

Stakeholders

Technology

Architecture

Objectives
Functional
requirements
Quality attributes
Constraints
Concerns

