History of the IAC

We live in an era where everything is being automatized. Machines are useful because they are
faster than humans and they do not get exhausted. We live in a word where things develop
quickly, and people have to work fast. But things were not always like this.

Years ago, you could purchase a computer and for the time it was delivered and installed,
weeks passed. For this reason, configuring it was not necessary to be done in a short period of
time. But then a revolution came: virtualization. VMs could be spined out in minutes, and they
required a configuration. The solution? Infrastructure automation again, more specifically
using cloning and server image templates. But there is a new problem: now we have a huge
number of servers whose initial configuration can be automatized but we have to maintain
them (having them up to date and avoiding Configuration Drift).

So, we have to manage our configuration of the infrastructures better; due to this problem a
new category of infrastructure automation emerged. CFengine, Puppet, and Chef established a
new category of infrastructure automation tool: IAC.

Infrastructure as code or as software was mainly used at first by organizations that took and
take full advantage of laaS (infrastructure as a service). Their servers are not in their offices, so
they were interested in researching new ways for configuring infrastructure. They needed to
manage their infrastructure as better as possible.

What is IAC?

First of all, we should understand some concepts:

e Turing Complete: a system capable of perform logic (if, else, else if...) and capable to
iterate and expand memory (loops, recursion, linking...).

e Config: files which contain values for different parameters. They are not Turing
Complete. Static text.

e Code: every Turing Complete human readable group of instructions. It is static.

e Software: it is the same as code but instead of static is dynamic and also everything
that code does, can be done by software and even more.

To be dynamic means that its state can change along time (even at runtime). Software
contains code but is even more than that: tests, features, syntax, documentation...

Nowadays, plenty of organizations are using config files to manage infrastructures. But you
have to ask yourself a question: if you have to configure a system (for example a server) and
you are in a Turing Complete use case (you need to use logic, for instance) what would you
use? A config file, code or software?

Well, the thing is that config files are not Turing Complete, so it is not possible. Code is a good
solution, but software goes further. Remember that software does everything that code does
and more. So that is the ideal solution.



That is exactly IAC or IAS, define the configurations where our applications will run on
(infrastructure) with software.



Common uses of IAC

The use of IAC is greatly extended among many fields in the industry. The scale of its use also
varies a lot, from big server farms to medium size companies. Some of the common uses that
IAC are:

- Unify the configuration of decentralized companies. Many companies nowadays have
many headquarters in different countries. This helps them bringing different points of
views in the development of their projects and simplifies logistics. However, it does
bring compatibility problems in their networks. Let’s say a EEUU based company
decides to open an office in Spain. If the pcs of the offices are configured manually,
there is a big chance that relevant parameters, such as the text encoding or default
date formats are set up differently. This can lead to many issues when interchanging
relevant information. But if the company configures their infrastructure with IAC, all
these configurations can be unified, reducing the risk of problems appearing.

- Automatise the deployment at server. Servers need to provide service consistently.
These means that the downtime of machines should be reduced as much as possible.
However, these machines sometimes break down and need to be swapped or
redeployed. If this deployment (with its consequent configuration) is done manually
every time, the procedure becomes time consuming and error prone. However, this
configuration can be automatised so that, whenever a machine is swapped, the
network detects it is a new system and runs the configuration automatically.

- Test applications in early development. When developing software, deploying the
project to production environment is a critical step. If the project has grown big, doing
this step at the end of development can cause several problems related to
dependencies and compatibilities. However, doing this deployment many times during
development (continuous integration) takes a lot of time and effort. Then laC solves
both problems: we can deploy the project automatically (with containers, for example)
to a production-like environment, which will unveil the problems in a much earlier
stage of development without taking away the time that manually deployment
requires. l1aC is not the same as continuous integration, but a very helpful way of doing
it.

- Security in relation to IAC. l1aC is a very powerful tool for many scenarios. However, the
fact that the configuration you specify is applied to many systems means that a
vulnerability in the template can cause serious security issues in many machines. In
2020, a study published by Unit 42 identified around 200,000 vulnerabilities in l1aC
templates. Here’s when a new term appears: Compliance as Code. After a “pure ”1aC
template is run, we can execute many other configurations (essentially, anything that
can be executed in a command line). This means that we can use protocols such as
SCAP to harden the systems deployed with IaC, solving the problem and even
improving the results we would have with a traditional approach. In fact, many
consider Compliance as Code a necessary part in Infrastructure as Code and not a
different technique.




laC as students

Since the scale of the common uses of 1aC is considerably large, it may seem out of range for
most of us to have any kind of practices with the most popular technologies. However, there’s
many options, some of them we already have worked with.

Vagrant: Vagrant is a tool used to automate building and management of virtual machines. In
this degree, Vagrant is used in SSI to configure the virtual machine with which the laboratories
are done.

Docker: Docker is a tool that transforms laC into a core component in the development
process. With Docker, developers can write code that specifies environments and
configurations, in which they can deploy the application at any moment in development to
check if there's any problem related to dependencies or incompatibilities. In this subject
(ASW), docker is recommended to apply continuous integration for the laboratory assignment.
There’s a seminar in the subject ASR in which docker is explained in depth. Also, in SSI, the VM
created with Vagrant has several docker images that configure environments prepared to work
with the lessons.

Emulate servers with VM: the use of virtual machines is not uncommon in many subjects of
this degree. Using technologies such as the ones commented above, we can automate the
configuration of VM with Vagrant and use docker to configure the environment, and if we put
it all together with several small virtual machines, we can see how laC saves a lot of time and
effort both for the developers and for the server configurations.




Why should we use IAC?

As everything in computer science, Infrastructure as Code brings us both advantages and
disadvantages of its usage. Some of the best benefits are:

- Simplicity. You can re-deploy your infrastructure with just one click. This in comparison
with the work you would have to do without the automatization, which would take a
long time to meticulously redeploy and configure the entire environment, is a very
easy task.

- Shareability. You can share your whole infrastructure with other teams or people by
just sending them the code. This code could also be customizable (for example, using
configuration files) allowing you to create templates.

- Stability. Every time we run the code, we get the same exact environment. This implies
the same number of hosts, networks... and even their names are identical.

- Scalability. Your code can be done in a way that allows you to modify the
configuration file in a way that the environment grows (As the code may contain
loops).

This process as | said before, may also bring us some drawbacks, some of them are:

- Learnability. As any other code-based system, learning to write a script might be very
difficult to learn for unexperienced users.

- Maintainability. As the infrastructure grows on size our code grows on lines. As the
software version develops, we will need to update more and more features, which
may result in technical debt.

- Error Handling. As is common in programming, bugs are an everyday thing, and our
code is not free of it. We might find the program failing in the middle of the execution
and it may not be easy to restart from the exact same point, and re-executing from
scratch may take a long time.

- Understandability. If you are using someone else’s code, it might take a lot of time for
you to understand it, and it could be difficult.

When should we use IAC?

We can use laC whenever we have to manage any type of infrastructure.



Bibliography:

- https://www.redhat.com/sysadmin/pros-and-cons-infrastructure-code



https://www.redhat.com/sysadmin/pros-and-cons-infrastructure-code

