
Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o Software Architecture

Lab. 08

TDD: Test-driven development

Code coverage(Codecov)

Continuous integration (GitHub Actions)

Tools to static analyze the code (Codacy)

2020-21

University of Oviedo

Jose Emilio Labra Gayo
Pablo González
Irene Cid
Paulino Álvarez



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

TDD

• Software development process where 
requirements are converted to specific test cases

• The opposite to software development that 
allows not tested software to be deployed

• Technique proposed by Kent Beck



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

TDD

Phases:

1. Add a test case

2. Execute test cases -> new one fails

3. Write the code

4. Execute all test cases

5. Code refactor



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

TDD

• Simple code created to satisfy the test case

• We get clean code as a result

• And a test-suite

• Helps focus to know what we want to implement



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Codecov

• Coverage code tool

• Code coverage: Measure to show what code lines 
has been executed by a test suite

• Some terminology about CodeCov:

▫ Hit: Line was executed

▫ Partial: Line was not tested fully. Example: an if 
sentence with only one path tested.

▫ Miss: Line was not executed



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Codecov

• Coverage ratio is calculated with the following 
formula

hits / (hits + misses + partials)

• After the tests, it generates a file that allows to 
do the analysis

https://codecov.io/gh/arquisoft/radarin_???

https://codecov.io/gh/arquisoft/radarin_


Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

TDD – Example test
export default function EmailForm(props) {
const [state, setState] = useState({email: '', remail: '', enabled: false});

function changeEmail(e) {
const email = e.target.value ;
setState({...state, email: email, enabled: email === state.remail});

}

function changeRemail(e) {
const remail = e.target.value ;
setState({...state, remail: remail, enabled: remail === state.email});

}

return (
<Form>

<Form.Control type="text" name="email" placeholder="Input email" aria-label="email-input"
onChange={changeEmail} value={state.email}/>

<Form.Control type="text" name="remail" placeholder="Input remail" aria-label="remail-input"
onChange={changeRemail} value={state.remail}/>

<Button variant="primary" type="submit" disabled={!state.enabled}>Submit</Button>
</Form>

)
}

We have a form with two email inputs (email and remail). 
It should be disabled until both inputs are equals



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

TDD – Example test
import React from 'react'
import { render, fireEvent } from "@testing-library/react";
import EmailForm from "./EmailForm";

test('check email button activated when 2 emails are equal', async () => {
const correctValues = { email: 'test@example.org', remail: 'test@example.org' };

const { getByLabelText, getByText, container } = render(<EmailForm/>);

const inputEmail = getByLabelText('email-input');
const inputRemail = getByLabelText('remail-input');

fireEvent.change(inputEmail, { target: { value: correctValues.email }});
expect(getByText(/Submit/i).closest('button')).toHaveAttribute('disabled');

fireEvent.change(inputRemail, { target: { value: correctValues.remail }});
expect(getByText(/Submit/i).closest('button')).not.toHaveAttribute('disabled');

});



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Continuous Integration (CI)

• Development practice that requires developers 
to integrate code into a shared repository 
several times a day

• Every task to build the software is executed 
when some condition is met (for instance, a push 
or pull request to master)



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Continuous Integration (CI)

• Detect and solve problems continuously

• Always available

• Immediate execution of unit test cases.

• Project quality monitorization.



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Continuous Integration (CI)

• Examples:
▫ Jenkins

▫ Pipeline

▫ Hudson

▫ Apache Continuun

▫ Travis

▫ GitHub Actions



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Continuous Integration (CI)

• Common usages:

▫ Maintenance of the code in a repository

▫ Building automation

▫ Quick building

▫ Execute test cases in a cloned production 
environment

▫ Show results of last build.



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

GitHub Actions

• Continuous integration service for projects 
stored in GitHub

• Free for free software projects

• Configuration is in one or multiple YAML files 
inside the .github/workflows directory that is 
localized in the root directory of the project



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

GitHub Actions

• .yml specifies:

▫ Conditions for firing the 
process

▫ List of jobs

 Each executed in a 
specific environment

▫ Steps to carry out the 
job (checkout, install 
dependencies, build and 
test)



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

GitHub Actions

• Each job can have a specific purpose (test a part 
of the app, deploy, etc.)

• GitHub actions can be used to automate other 
parts of the repository. Example: autoreply to 
new issues created in the repository



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

GitHub Actions

• - uses: actions/checkout@v2.

▫ Uses an action created by the community.

▫ In this case, it checks out the project to the runner

• - uses: actions/setup-node@v1
with:

node-version: 12.14.1

▫ Installs node in the runner

• - run: npm ci

▫ Runs a command (install the dependencies)



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Static analysis of the code

• Analyzed the code without compiling it

• Detects bugs, code smells, system 
vulnerabilities, etc.

• Useful to control the code quality.

• If the code does not meet the quality 
requirements, then the commit can be blocked



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Codacy

• Static code analysis tool

• It needs:

▫ Git server like GitHub

▫ Repository access

▫ An accepted language

• The Project is imported to Codacy so it can be 
analyzed



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Codacy

• After the analysis Codacy sends an email



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Codacy

• In the Project Dashboard we see two main 
sections: specific branches and the main one

• For each branch there are the following sections:

▫ Quality evolution

▫ Issues breakdown

▫ Coverage status

▫ Hotspots

▫ Logs

▫ Pull requests status



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Codacy: Project certification and 

Quality evolution



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Codacy: Issues breakdown



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Codacy: Coverage status



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Codacy

• Security: security issues, potential vulnerabilities, 
unsafe dependencies.

• Error Prone: bad practices/patterns that cause 
code to fail/prone to bugs.

• Code Style: related to the style of the code, line 
length, tabs vs spaces.

• Compatibility: identifies code that has 
problems with older systems or cross platform 
support.

• Unused Code: unnecessary code not being used.
• Performance: inefficiently written code.



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Codacy: Files



Software Architecture
S

c
h

o
o

l
o

f
C

o
m

p
u

te
r

S
c

ie
n

c
e

, 
U

n
iv

e
r

s
it

y
o

f
O

v
ie

d
o

Codacy: File detail


