School of Computer Science, University of Ovi€

Software Architecture

Lab. 08

TDD: Test-driven development

Code coverage(Codecov)

Continuous integration (GitHub Actions)

Tools to static analyze the code (Codacy)

2020-21

EN

English

SOFTWARE
ARCHITECTURE

Jose Emilio Labra Gayo
Pablo Gonzalez

Irene Cid
Paulino Alvarez




Software Architecture H

TDD

- Software development process where
requirements are converted to specific test cases

- The opposite to software development that
allows not tested software to be deployed

ity of Oviedo

 Technique proposed by Kent Beck

School of Computer Science, Univers



Software Architecture H

TDD

Phases:

Add a test case

Execute test cases -> new one fails ‘
Write the code

Execute all test cases ‘
Code refactor

O w b

School of Computer Science, University of Oviedo



Software Architecture H

TDD

- Simple code created to satisfy the test case

- We get clean code as a result

- And a test-suite

- Helps focus to know what we want to implement

School of Computer Science, University of Oviedo



Software Architecture H

Codecov

 Coverage code tool

» Code coverage: Measure to show what code lines
has been executed by a test suite

- Some terminology about CodeCov:

= Hit: Line was executed

= Partial: Line was not tested fully. Example: an if
sentence with only one path tested.

= Miss: Line was not executed

School of Computer Science, University of Oviedo



Software Architecture H

Codecov

- Coverage ratio is calculated with the following
formula

- After the tests, it generates a file that allows to
do the analysis

https://codecov.io/gh/arquisoft/radarin ???

ity of Oviedo

School of Computer Science, Univers


https://codecov.io/gh/arquisoft/radarin_

Software Architecture

(=)
=)
=]
Q
i~
S
Sl
=]
>
-
o
7]
[
o
>
op{
=]
Rl
(=
)
o
-
-
Q
o pi
Q
n
[
Q
=
2
=
=
o=
=
o
Q
o
S
o
=)
p—
(@)
=)
(@)
=)
o~
=
9
1]

TDD - Example test

export default function EmailForm(props) {
const [state, setState] = useState({email: '', remail: '', enabled: false});

function changeEmail(e) {
const email = e.target.value ;
setState({...state, email: email, enabled: email === state.remail});

}

function changeRemail(e) {
const remail = e.target.value ;
setState({...state, remail: remail, enabled: remail === state.email});

}

return (
<Form>
<Form.Control type="text" name="email" placeholder="Input email" aria-Llabel="email
onChange={changeEmail} value={state.email}/>
<Form.Control type="text" name="remail" placeholder="Input remail" aria-label="rem{
onChange={changeRemail} value={state.remail}/>
<Button variant="primary" type="submit" disabled={!state.enabled}>Submit</Button>
</Form>

)
}

We have a form with two email inputs (email and remail).
It should be disabled until both inputs are equals



Software Architecture

School of Computer Science, University of Oviedo

TDD - Example test

import React from 'react'’
import { render, fireEvent } from "@testing-library/react";
import EmailForm from "./EmailForm";

test('check email button activated when 2 emails are equal', async () => {
const correctValues = { email: 'test@example.org', remail: 'test@example.org' };

const { getByLabelText, getByText, container } = render(<EmailForm/>);

const inputEmail = getBylLabelText('email-input');
const inputRemail = getBylLabelText('remail-input');

fireEvent.change(inputEmail, { target: { value: correctValues.email }});
expect(getByText(/Submit/i).closest('button')).toHaveAttribute('disabled');

fireEvent.change(inputRemail, { target: { value: correctValues.remail }});
expect(getByText(/Submit/i).closest('button')).not.toHaveAttribute('disabled’);

});




Software Architecture H

Continuous Integration (Cl)

- Development practice that requires developers
to integrate code into a shared repository
several times a day

ity of Oviedo

» Every task to build the software is executed
when some condition is met (for instance, a push
or pull request to master)

Univers

School of Computer Science,



Software Architecture H

Continuous Integration (Cl)

- Detect and solve problems continuously
- Always available

- Immediate execution of unit test cases.
- Project quality monitorization.

ity of Oviedo

Univers

School of Computer Science,



Software Architecture H

Continuous Integration (Cl)

- Examples:
= Jenkins
= Pipeline
= Hudson
= Apache Continuun

o Travis
= GitHub Actions

ersity of Oviedo

School of Computer Science,



Software Architecture H

Continuous Integration (Cl)

« Common usages:
= Maintenance of the code in a repository
= Building automation
s Quick building
» Execute test cases in a cloned production
environment
= Show results of last build.

School of Computer Science, University of Oviedo



Software Architecture H

GitHub Actions

- Continuous integration service for projects
stored in GitHub

- Free for free software projects

 Configuration is in one or multiple YAML files
inside the .github/workflows directory that is
localized in the root directory of the project

ity of Oviedo

Univers

School of Computer Science,



Software Architecture H

GitHub Actions I

on:
push:
branches: [ master ]

¢ .yml SpeCifieS: pull_request:

o, o o o branches: [ master ]
= Conditions for firing the
jobs:
:I)]?()(:(BE;E; ] build-test-webapp:

runs-on: ubuntu-latest

fa'; o LlSt ijObS defaults:

jc:i - Each executed in a riing-cirectory: webapp
specific environment T st

D = Steps to carry out the [ enensmetupnoend
job (checkout, install e 22

: dependencies, build and e b

1; teSt) _ uses: codecov/codecov-action@vi



Software Architecture H

GitHub Actions

- Each job can have a specific purpose (test a part
of the app, deploy, etc.)

- GitHub actions can be used to automate other
parts of the repository. Example: autoreply to
new issues created in the repository

ity of Oviedo

Univers

School of Computer Science,



Software Architecture H

GitHub Actions

» - uses: actions/checkout@uv2.

= Uses an action created by the community.

= In this case, it checks out the project to the runner
» - uses: actions/setup-node@uv1

with:
node-version: 12.14.1

= Installs node in the runner
e -TUN: Npm ci

» Runs a command (install the dependencies)

School of Computer Science, University of Oviedo



Software Architecture H

Static analysis of the code

- Analyzed the code without compiling it

 Detects bugs, code smells, system
vulnerabilities, etc.

- Useful to control the code quality.

» If the code does not meet the quality
requirements, then the commit can be blocked

ity of Oviedo

Univers

School of Computer Science,



Software Architecture H

Codacy

- Static code analysis tool
- It needs:

o Git server like GitHub

= Repository access

= An accepted language

- The Project is imported to Codacy so it can be
analyzed

ity of Oviedo

School of Computer Science, Univers



Software Architecture

Codacy

- After the analysis Codacy sends an email

Dashboard bhackup 0.4.0 «

M
Dashboard
o 0 Project Certification Issues Breakdown Coverage
o Commits.
la=]
.g Code Complexity Code Style
Fil 9,
3 86% 148
i Total Issues
= o) . _
Compatibility Documentation
b Issues o o @
= 100% v
)] omg
= ot @ Error Prone 122
Q>) Pull Requests Error Prone Performance No Coverage Data
Code Style 26
= 0% 100% We do not have coverage data for
Q Unused Code o the current commit.
Goals
Security Unused Code
100% 100%
Code patterns
Goals Issues Severity Churn/Complexity Project quality Coverage
ﬁ ssues Code Style = Error Prone
137

settings.
w—_—
100
80
60

Not sure what to do next?

40
Setup some goals to help you improve your code!

Setup Goals

School of Computer Science, Un



Software Architecture H

Codacy

« In the Project Dashboard we see two main
sections: specific branches and the main one
» For each branch there are the following sections:
s Quality evolution
= Issues breakdown
s Coverage status
= Hotspots
o Logs
= Pull requests status

School of Computer Science, University of Oviedo



Software Architecture

Codacy: Project certification and

Quality evolution

G Project certification

Quality evolution

Last 7 days

Duplicated code ® Coverage
39% +160% -

Trend for the next 31 days Pull request prediction

Issues @ Complex Files ®
67% 1%

=}

a1

.d.)

5

8 %

; 80

-y

/)]

B .

.2 60

=

=

)

3]

<] 40

3}

-y

[ 2]

»n

Sl

3 20

=

£

<)

Q 0 .

(T

(=} 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

p—

=}

<}

=

3]

»n

17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3
MAY

Last 31 days

Quality standard

Days



Software Architecture H

Codacy: Issues breakdown

Issues breakdown

70 1 7 total issues

=]

E Category Total
95 Security ‘ 104
? Error Prone - 616
P

[

é Code Style D 6297
g Compatibility 0

=

Q

'g Unused Code 0

Sl

2 Performance 0

="

£ _

8 See all issues

[

=]

=

=]

=

9

2]



Software Architecture H

Codacy: Coverage status

Coverage

95'% LoC covered
S

I Cuality settings: 60% coverage
Files without coverage @ 13
Files not up to standards = 0

Files up to standards @ 5

See all files

School of Computer Science, University of Oviedo



Software Architecture H

Codacy

- Security: security issues, potential vulnerabilities,
unsafe dependencies.

- Error Prone: bad practices/patterns that cause
code to fail/prone to bugs.

- Code Style: related to the style of the code, line
length, tabs vs spaces.

- Compatibility: identifies code that has
problems with older systems or cross platform
support.

- Unused Code: unnecessary code not being used.
- Performance: inefficiently written code.

School of Computer Science, University of Oviedo



Software Architecture

Codacy: Files

Files master «

GRADE FILENAME ISSUES + DUPLICATION COMPLEXITY COVERAGE
o tests/Codacy/Coverage/Parser/CloverParserTest.php E 4
=}
"8 o src/Codacy/Coverage/Parser/CloverParser.php E 16
5
< o .
1) src/Codacy/Coverage/Application.php 1
2z
I2
q>) o tests/Codacy/Coverage/Parser/ParserTest.php 1
g
= N
8" o tests/Codacy/Coverage/Util/GitClientTest.php 1
c}; o tests/Codacy/Coverage/Parser/PhpUnitXmlParserTest.php 2
Sl
&
a 0 src/Codacy/Coverage/Command/Phpunit.php 3
5
Q
= o src/Codacy/Coverage/Util/GitClient.php 3
g
'5 o src/Codacy/Coverage/Util/CodacyApiClient.php 4
n



Software Architecture

Codacy: File detail

G squbs-unicomplex/src/main/scala/org/squbs/unicomplex/streaming/ServiceRegistry.scala

School of Computer Science, University of Oviedo

TIME TO FIX: 1 hour View on GitHub
Size Structure
Lines of code: 273 Number of Classes:
Source lines of code: 194 sLoC / Class: @
Commented lines of code: 26 Number of Methods:

sLoC / Method: @

24.25
31
6.26

Complexity

Complexity:
Complexity / Class:

Complexity / Method:

Churn:

26
3.25
0.84

19

Duplication

Number of Clones:

Duplicated lines of code:

Ignore File

13
134



