
Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Runtime/behaviour

Jose E. Labra GayoCourse 2020/2021

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Runtime behaviour

Also called: Components and connectors

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Batch
Pipes & Filters

Pipes & Filters with uniform interface

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Batch

Independent programs are executed sequentially
Data is passed from one program to the next

Note
Batch style = grandfather of software architectural styles

Stage

Write port

Stage

Stage

ConnectorStage

Read port

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Batch

Elements:
Independent executable programs

Constraints
Output of one program is linked to input of the next
A program usually waits for the previous one to

finish its execution

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Batch

Advantages
Low coupling between

components
Re-configurability
Debugging

It is possible to debug each
input independently

Challenges
It does not offer interactive

interface
Requires external

intervention
No support for concurrency

Low throughput
High latency

Definitions:
Throughput: rate at which something can be processed.

Example: number of jobs/second
Latency: time delay experienced by a process

Example: 2 seconds

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Pipes & Filters

Data flows through pipes and is processed by filters

Filter

Filter

Filter

Pipe

Filter

Filter Filter

Write port

Read port

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Pipes & Filters

Elements
Filter: component that transforms data

Filters can be executed concurrently
Types of filters:

Data sources (input to the system)
Flow
Sinks (output of the system)

Pipe: Takes output data from one filter to the input of
another filter
Properties: buffer size, data format, interaction protocol

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Pipes & Filters

Constraints
Pipes connect outputs from one filter to inputs of other

filters
Filters must agree on the exchange format they admit

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Pipes & Filters

Advantages
Better understanding of

global system
Total behavior = sum of each

filter behavior
Reusability:

Filters can be recombined
Evolution and extensibility:

It is possible to create/add
new filters

It is possible to substitute old
filters by new ones

Testability
Independent verification of

each filter
Performance

It enables concurrent
execution of filters

Challenges
Possible delays in case of

long pipes
It may be difficult to pass

complex data structures
Non interactivity

A filter can not interact with its
environment

Backpressure
Consumers receive more data

than they can process

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Pipes & Filters

Examples & Applications
Unix

who | wc -l
Yahoo Pipes
Java Streams
Flow based programming

https://en.wikipedia.org/wiki/Flow-based_programming
Stream programming

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Pipes & Filters - uniform interface

Variant of Pipes & Filters where filters have the
same interface

Elements
The same as in Pipes & Filters

Constraints
Filters must have a uniform interface

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Pipes & Filters - uniform interface
Advantages:

Independent development of filters
Re-configurability
Facilitates system understanding

Challenges:
Performance can be affected if data have to be

converted to the uniform interface
Marshalling

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Pipes & Filters - uniform interface

Examples:
Unix operating system

Programs with a text input (stdin) and 2 text outputs
(stdout y stderr)

Web architecture: REST

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Master-Slave

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Master-Slave

Master divides work in sub-tasks
Assigns each sub-task to different nodes
The computational result is obtained as the

combination of the slaves results results

Slave 1 Slave 2

Master

Slave N. . .

Problem

task 1 task 2 task N

Solution

result Nresult 2result 1

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Master-Slave

Elements
Master: Coordinates execution
Slave: does a task and returns the result

Constraints
Slave nodes are only in charge of the computation
Control is done by the Master node

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Master-Slave

Advantages
Parallel computation
Fault tolerance

Challenges
Difficult to coordinate work between slaves
Dependency on Master node
Dependency on physical configuration

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Master-Slave

Applications:
Process control systems
Embedded systems
Fault tolerant systems
Search systems

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

MVC: Model - view - controller
MVC variants

PAC: Presentation - Abstraction - Control

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o MVC

MVC: Model - View - Controller
Proposed by Trygve Reenskaug (end of 70's)
Solution for GUI
Controller separates model from the view
"Mental model" offered through views

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o MVC

Elements
Model: represents business logic and state
View: Offers state representation to the user
Controller: Coordinates interaction, views and model

Mental
Model

Controller

Model

View 1

View 2

User

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o MVC

Constraints
Controller processes user events

Creates/removes views
Handles interaction

Views only show values
Models are independent of controllers/views

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o MVC

Advantages
Supports multiple views of

the same model
Views synchronization
Separation of concerns

Interaction (controller),
state (model)

It is easy to create new
views and controllers

Easy to modify look & feel
Creation of generic

frameworks

Challenges
Increases complexity of

GUI development
Coupling between

controllers and views
Controllers/Views should

depend on a model
interface

Some difficulties for GUI
tools

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o MVC

Applications
Lots of web frameworks follow MVC

Ruby on Rails, Spring MVC, Play, etc.
Some variants

Push: controllers send orders to views
RoR

Pull: controllers receive orders from views
Play

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o MVC variants

PAC
Model-View-Presenter
Model View ViewModel
Model View Update
...

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o PAC

PAC: Presentation-Abstraction-Control
Hierarchy of agents
Each agent contains 3 components

PresentationAbstraction Control

PAC Agent

PresentationAbstraction Control

PAC Agent

PresentationAbstraction Control

PAC Agent

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o PAC

Elements
Agents with

Presentation: visualization aspects
Abstraction: data model of an agent
Control: connects presentation and abstraction

components and enables communication between
agents

Hierarchical relationship between agents
Constraints

Each agent is in charge of some functionality
There is no direct communication between abstraction

and presentation in each agent
Communication through the control component

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o PAC

Advantages
Separation of concerns

Identifies functionalities
Support for changes and

extensions
It is possible to modify an

agent without affecting
others

Multitask
Agents can reside in different

threads, processes or
machines

Challenges
Complexity of the system

Too many agents can generate
a complex structure which
can be difficult tom maintain

Complexity of control
components
Control components handle

communication
Quality of control components

is important for the whole
quality of the system

Performance
Communication overload

between agents

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o PAC

Applications
Network monitoring systems
Mobile robots
Drupal is based on PAC

Relationships
This patterns is related with MVC

MVC has no agent hierarchy
This pattern was re-discovered as Hierarchical MVC

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Shared data
Blackboard
Rule based

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Shared data

Independent components access the same state
Applications based on centralized data repositories

Component Component

Shared
Data

Component
...

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Shared data

Elements
Shared data

Database or centralized repository
Components

Processors that interact with shared data

Component Component

Shared
Data

Component
...

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Shared data

Constraints
Components interact with the global state
Components don't communicate between each other

Only through shared state
Shared repository handles data stability and consistency

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Shared data

Advantages
Independent

components
They don't need to be

aware of the
existence of other
components

Data consistency
Centralized global state
Unique Backup of all

the system state

Challenges
Unique point of failure

A failure in the central
repository can affect the
whole system

Distributing the central data
can be difficult

Possible bottleneck
Inefficient communication
Problems for scalability

Synchronization to access
shared memory

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Shared data

Applications
Lots of systems use this approach

Some variants
This style is also known as:

Shared Memory, Repository, Shared data, etc.
Blackboard
Rule based systems

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Blackboard

Complex problems which are difficult to solve
Knowledge sources solve parts of the problem
Each knowledge source aggregates partial solutions

to the blackboard

Knowledge
Source

Knowledge
Source

Blackboard

Knowledge
Source ...

Control

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Blackboard

Elements
Blackboard: Central data repository
Knowledge source: solves part of the problem and

aggregates partial results
Control: Manages tasks and checks the work state

Knowledge
source

Knowledge
source

Blackboard

Knowledge
source ...

Control

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Blackboard

Constraints
Problem can be divided in parts
Each knowledge source solves a part of the

problem
Blackboard contains partial solutions that are

improving

Knowledge
source

Knowledge
source

Blackboard

Knowledge
source ...

Control

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Blackboard

Advantages
Experimentability

Can be used for open
problems

Facilitates strategy
changes

Reusability
Knowledge sources

can be reused
Fault tolerance

Challenges
Debugging

No warranty that the right
solution will be found

Difficult to establish
control strategy

Performance
It may need to review

incorrect hypothesis
High development cost

Parallelism implementation
It is necessary to synchronize

blackboard access

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Blackboard

Applications
Some speech recognition systems

HEARSAY-II
Pattern recognition
Weather forecasts
Games
Analysis of molecular structure

Crystalis

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Rule based systems

Variant of shared memory
Shared memory = Knowledge base

Contains rules and facts

Inference
Engine

Knowledge base
Rules + facts

User
Interface

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Rule based systems

Elements:
Knowledge base: Rules and facts about some

domain
User interface: Queries/modifies knowledge base
Inference engine: Answers queries from data and

knowledge base

Inference
Engine

Knowledge base
Rules + facts

User
Interface

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Rule based systems

Constraints:
Domain knowledge captured in knowledge base
Limit imperative access to knowledge base

It is based on rules like:
IF antecedents THEN consequent

Limits expressiveness with regards to imperative
languages

Inference
Engine

Knowledge base
Rules + facts

User
Interface

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Rule based systems

Advantages
Maintainability

It may be easy to modify
the knowledge base

Specially tailored to be
modified by domain
experts

Separation of concerns
Algorithm
Domain knowledge

Reusability

Challenges
Debugging
Performance
Rules creation and

maintenance
Introspection
Automatic rule learning
Runtime update of

rules

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Rule based systems

Applications
Expert system
Production systems
Rules libraries in Java

JRules, Drools, JESS
Declarative, rule based languages

Prolog (logic programming)
BRMS (Business Rules Management Systems)

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Call-return
Client-Server
Event based architectures

Publish-Subscribe
Actor models

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Call-return

A component calls another component and waits
for the answer

Component A Component B

call

return

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Call-return

Elements
Component that does the call
Component that sends the answer

Constraints
Synchronous communication:

The caller waits for the answer

Componente A Componente B

call

return

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Call-return

Advantages
Easy to implement

Challenges
Problems for concurrent computation

If component is blocked waiting for the answer
It can be using unneeded resources

Distributed environments
Little utilization of computational capabilities

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Client-Server

Variant of layers
2 layers physically separated (2-tier)

Functionality is divided in several servers
Clients connect to services

Interface request/response

Network

request

response

client
server

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Client-Server

Elements
Server: offers services through a query/answer

protocol
Client: does queries and process answers
Network protocol: communication management

between clients and servers

Network

request

response

client
server

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Client-Server

Constraints
Clients communicate with servers

Not the other way
Clients are independent from other clients
Servers don't have knowledge about clients
Network protocol establishes some communication

warranties
Network

request

response

client
server

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Client-Server

Advantages
Distribution

Servers can be distributed
Low coupling

Separation of functionality
between clients/servers

Independent development
Scalability
Availability

Functionality available to all
clients

But not all the servers need
to offer all functionality

Challenges
Each server can be a single

point of failure
Server attacks

Unpredictable performance
Dependency on the system

and the network
Problems when servers

belong to other
organizations
How can quality of service

be warranted?

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Client-Server

Variants
Stateless
Replicated server
With cache

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Network

Client-Server stateless

Constraint
Server does not store information about clients
Same query implies same answer

query

answer

client
server

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Client-Server stateless

Advantages
Scalability

Challenges
Application state management

Client must remember requests
Handle information between requests

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Network

Replicated server

Constraint
Several servers offer the same service

Offer the client the appearance that there is only one
server

query

answer
client

server

server

server

Abstract
Server

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Replicated server

Advantages
Better answer times
Less latency
Fault tolerance

Challenges
Consistency management between replicated

servers
Synchronization

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Client-server with cache

Cache = mediator between client/server
Stores copies of previous answers to the server

When a query is received it return the cached answer
without asking the original server

Network
query

answer
client server

Cache

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Client-server with cache

Elements:
Intermediate cache nodes

Constraints
Some queries are directly answered by the cache

node
Cache node has a policy for answer management

Expiration time

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Client-server with cache

Advantages:
Less network

overload
Lots of repeated

requests can be
stored in the cache

Less answer time
Cached answers

arrive earlier

Challenges
Complexity of

configuration
Expiration policy
Not appropriate for certain

domains
When high fidelity of

answers is needed
Example: real time systems

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Event driven architecture (EDA)

Event
Producer

Event
Processor

Event
Consumer

event event

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Event driven architecture

Elements:
Event:

Something that has happened (≠ request)
Event producer

Event generator (sensors, systems, ...)
Event consumer

DB, applications, scorecards, ...
Event processor

Transmission channel
Filters and transforms events

Event
Producer

Event
Processor

Event
Consumer

event event

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Event driven architecture

Constraints:
Asynchronous communication

Producers generate events at any moment
Consumers can be notified of events at any moment

Relationship one-to-many
An event can be sent to several consumers

Event
Producer

Event
Processor

Event
Consumer

event event

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Event driven architecture

Advantages
Decoupling

Producer does not
depend on consumer,
nor vice versa.

Timelessness
Events are published

without any need to
wait for the termination
of any cycle

Asynchronous
In order to publish an

event there is no need
to finish any process

Challenges
Non sequential execution

Possible lack of control
Consistency
Difficult to debug

Event
Producer

Event
Processor

Event
Consumer

event event

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Event driven architecture

Applications
Event processing networks
Event-Stream-Processing (ESP)
Complex-event-processing

Variants
Publish-subscribe
Actor models

Related patterns
CQRS, Event sourcing

Event
Producer

Event
Processor

Event
Consumer

event event

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Publish-subscribe

Components subscribe to a channel to receive
messages from other components

Component

Event Bus
Subscribe
Port

Publish
Port

Component

Component Component

Component

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Publish-subscribe

Elements:
Component:

Component that subscribes to a channel
Publication port

It is registered to publish messages
Subscription port

It is registered to receive some kind of messages
Event bus (message channel):

Transmits messages to subscribers

Event Bus Subscribe
Port

Publish
Port

Component Component

Component Component Component

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Publish-subscribe

Constraints:
Separation between subscription/publication port

A component may have both ports
Non-direct communication

Asynchronous communication in general
Components delegate communication responsibility to

the channel

Event Bus Subscribe
Port

Publish
Port

Component Component

Component Component Component

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Publish-subscribe

Advantages
Communication quality

Improves performance
Debugging

Low coupling between
components
Consumers do not

depend on publishers
...nor vice versa...

Challenges
It adds a new indirection

level
Direct communication

may be more efficient in
some domains

Complex implementation
It may require COTS

Event Bus

Component Component

Component Component Component

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Actor models

Used for concurrent computation
Actors instead of objects
There is no shared state between actors
Asynchronous message passing

Theoretical developments since 1973 (Carl Hewitt)

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Actor models

Elements
Actor: computational entity with state

It communicates with other actors sending messages
It process messages one by one

Messages
Addresses: Identify actors (mailing address)

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Actor models

Constraints
An actor can only:

Send messages to other actors
Messages are immutable

Create new actors
Modify how it will process next message

Actors are decoupled
Receiver does not depend on sender

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Actor models

Constraints (2)
Local addresses

An actor can only send messages to known addresses
Because they were given to it or because he created them

Parallelism:
All actions are in parallel
No shared global state
Messages can arrive in any order

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Actor models

Challenges
Message sending

How to handle arriving
messages

Actor Coordination
Non-consistent systems

by definition

Advantages
Highly parallel
Transparency and

scalability
Internal vs external

addresses
Non-local actor models

Web Services
Multi-agent systems

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Actor models

Implementations
Erlang (programming language)
Akka (library)

Applications
Reactive systems
Examples: Ericsson, Facebook, twitter

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o CQRS

Command Query Responsibility Segregation
Separate models in 2 parts

Command: Does changes (updates information)
Query: Only queries (get information)

Application

Model

User
Interface

Data
Base

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o CQRS

Command Query Responsibility Segregation
Separate models in 2 parts

Command: Does changes (updates information)
Query: Only queries (get information)

Application

Query

User
Interface

Data
Base

Command

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o CQRS

Scalability
Optimize queries (read-only)
Asynchronous commands

Facilitates team
decomposition and
organization
One team for read access

(queries)
Another team for write/update

access (command)

Hybrid operations
Both query and command
Example: pop() in a stack

Complexity
For simple CRUD applications it

can be too complex
Synchronization

Possibility of queries over non-
updated data

Applications
Axon Framework

Advantages Challenges

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Event Sourcing

All changes to application state are stored as a
sequence of events
Every change is captured in an event store

It is possible to trace and undo changes

Write

--

Event
store

Event
Driver

Read

snapshots

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Event Sourcing
Elements

Events: something that has happened, in the past
Event store: Events are always added (append-only)
Event driver: handles the different events
Snapshots of aggregated state (optional)

Write

--

Event
store

Event
Driver

Read

snapshots

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Event Sourcing

Fault tolerance
Traceability

Determine the state of the
application at any time

Rebuild and event-replay
It is possible to discard an

application state and re-
run the events to rebuild
a new state

Scalability
Append-only DB can be

optimized

Advantages

Novelty of development
Different with traditional systems

Eventual consistency
Software updates

Different event versions together?
Resource management

Granularity of events
Event storage grows with time

Snapshots can be used for
optimization

Challenges

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Event Sourcing

Applications
Database systems

Datomic
EventStore

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Plugins
Microkernel
Reflection
Interpreters and DSL
Mobile code
- Code on demand
- Remote evaluation
- Mobile agents

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Plugin
Plugin

Plugins
It allows to extend the system using plugins that

add new functionality

Runtime
engine Base system

Plugin

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Plugins

Elements
Base system:

System that allows plugins
Plugins: Components that can be added/removed

dynamically
Runtime engine:

Starts, localizes, initializes, executes, and stops plugins

Plugin
Plugin

Runtime
engine Base system

Plugin

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Plugins

Constraints
Runtime engine manages plugins
System can add/remove plugins
Some plugins can depend on other plugins

The plugin must declare dependencies and the
exported API

Plugin
Plugin

Runtime
engine Base system

Plugin

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Plugins

Advantages
Extensibility

Application can get
new functionalities in
some ways that were
not foreseen by the
original developers

Customization
Application can have a

small kernel that is
extended on demand

Challenges
Consistency

Plugins must be added to
the system in a sound way

Performance
Delay

searching/configuring
plugins

Security
Plugins made by third

parties can compromise
security

Plugin management and
dependencies

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Plugins

Examples
Eclipse
Firefox

Technologies
Component systems: OSGi

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Microkernel

Identify minimal functionality in a microkernel
Extra functionality is added using internal servers
External server handles communication with other

systems

MicrokernelAdapter
Servidor
internoServidor

internoInternal
server

External
serverClient

System

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Microkernel

Elements
Microkernel: Minimal functionality
Internal server: Extra functionality
External server: Offers external API
Client: External application

Adapter: Component that establish communication
with external server

MicrokernelAdapter
Servidor
internoServidor

internoInternal
server

External
serverClient

System

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Microkernel

Constraints:
Microkernel implements only minimal functionality
The rest of the functionality is implemented using

internal servers
Communication with clients by external servers

MicrokernelAdapter
Servidor
internoServidor

internoInternal
server

External
serverClient

System

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Microkernel

Advantages
Portability

It is only needed to port the
kernel

Flexibility and extensibility
Adding new functionality

with new internal servers
Security and reliability

Critical parts of the system
are encapsulated

Errors in external parts
don't affect the
microkernel

Challenges
Performance

A monolithic can be more
efficient

Design complexity
Identify components in the

microkernel
It may be difficult to separate

parts to internal servers
Unique point of failure

If microkernel fails, the
whole system may fail

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Microkernel

Applications
Operating systems
Games
Editors

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Reflection

Change the structure and behavior of an
application dynamically
Systems that can modify themselves

Elements
Base level: Implements application logic
Metalevel: Aspects that can be modified
Metaobject protocol: Interface that can modify the

metalevel

Base level

Metalevel

Meta-object
Protocol

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Reflection

Constraints
Base level uses metalevel aspects for its behavior
At runtime, it is possible to modify the metalevel

using the metaobject protocol

Base level

Metalevel

Meta-object
Protocol

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Reflection

Advantages
Flexibility

Adapt to changing
conditions

Change behavior of
running system
without changing
source code or
stopping execution

Challenges
Implementation

Not all languages enable
meta-programming

More difficult to combine
with static type systems

Performance
It may be necessary to do

some optimizations to limit
reflection

Security:
Consistency maintenance

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Reflection

Applications
Most dynamic languages support reflection

Scheme, CLOS, Ruby, Python,
Intelligent systems
Self-modifiable code

Base level

Metalevel

Meta-object
Protocol

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Interpreters and DSLs

Include a domain specific language (DSL) that is
interpreted by the system

Context

Interpreter
DSL

program

Application

User

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Interpreters and DSLs

Elements
Interpreter: Module that executes the program
Program: Written in the DSL

DSL can be designed so the end user can write programs
Context: Environment where the program is executed

Context

Interpreter
Program
in DSL

Application

User

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Interpreters and DSLs

Constraints
Interpreter runs the program interacting with the

context
It is necessary to define a DSL

Syntax (grammar, parsing,...)
Semantics (behavior)

Context

Interpreter
Program
in DSL

Application

User

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Interpreters and DSLs

Advantages
Flexibility

Adapt application behavior
to user needs

Usability
End users can write their

own programs
Adaptability

Easy to adapt to
unforeseen situations

Challenges
Design of the DSL
Complexity of

implementation
Interpreter
Separation of

context/interpreter
Performance

Possible programs may be
not optimal

Security
Handle wrong programs

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Interpreters and DSLs

Variants:
Embedded DSLs

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Embedded DSLs

Embedded DSLs
Domain specific languages that are embedded in

general purpose host languages
This technique is popular in soma languages like

Haskell, Ruby, Scala, etc.

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Embedded DSLs

Advantages:
Reuse of host language syntax
Access to libraries and IDEs of host language

Challenges
Separation between DSL and host language
End users may have too many expressivity

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Mobile code

Code that is transferred from one machine to another
System A sends a program to be run by system B
System B must contain an interpreter for the language

in which the program is written

Network

System
A

System
B

Interpreter

program

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Mobile code

Elements
Interpreter: Runs the code
Program: Program that is transferred
Network: Transfers the program

Network

System
A

System
B

Interpreter

program

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Mobile code

Constraints
The program must be run in the receiver system
The network protocol transfers the program

Network

System
A

System
B

Interpreter

program

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Mobile code

Advantages
Flexibility and adaptability to new environments
Parallelism

Challenges
Complexity of implementation
Security

Network

System
A

System
B

Interpreter

program

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Mobile code

Variants
Code on demand
Remote evaluation
Mobile Agents

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Network

Code on demand
Code is downloaded and run by the client
Combination between mobile code and client-

server
Example:

ECMAScript

Client

Program

ServerQuery

Interpreter
Answer

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Code on demand

Elements
Client
Server
Code that is transferred from server to client

Constraints
Code resides or is generated by the server
It is transferred to the client when it asks for it
It is run by the client

Client must have an interpreter for the corresponding
language

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Code on demand

Advantages
Improves user experience
Extensibility: Application

can add new
functionalities that were
not foreseen
No need to install or

download a whole
application

Always Beta
Adaptability to client

environment

Challenges
Security
Coherence

It may be difficult to
ensure an
homogeneous
behavior in different
types of clients
Client can even decide

not to run the program
Reminder: Responsive

design

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Code on demand

Applications:
RIA (Rich Internet Applications)

HTML5 standardizes a lot of APIs
Improves coherence between clients

Variants
AJAX

Initially: Asynchronous Javascript and XML
The program that is running at the client side sends

asynchronous requests to the server without
stopping its running

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Remote evaluation

System A sends program to system B to be run
and obtain its results

System
A

System
B

Answer
(Result)

Interpreter

Program

Query

Network

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Remote evaluation

Elements
Sender: Does the query including the program
Receiver: Runs the program and returns the results

Constraints
Receiver runs the program

It must contain some interpreter of the program
language or the program could be in machine code

Network protocol transfers program and results

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Remote evaluation

Advantages
Exploits capabilities of third parties

Computational capabilities, memory, resources, etc.
Challenges

Security
Untrusted code
Virus = variant of this style

Configuration

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Remote evaluation

Example:
Volunteer computation

SETI@HOME
It was the basis for the BOINC system

Berkeley Open Infrastructure for Network Computing
Other projects: Folding@HOME, Predictor@Home,

AQUA@HOME, etc.

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Mobile agents

Code and data can move from one machine to
another to be run
The process takes its state from machine to

machine
Code can move autonomously

System B

Program Interpreter

System A

Program Interpreter

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Mobile agents

Elements
Mobile agent: Program that travels and is run from

one machine or another autonomously
System: Execution environment where the mobile

agents are run
Network protocol: transfers state between agents

Systema B

Program Interpreter

System A

Program Interpreter

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Mobile agents

Constraints
Systems host and run mobile agents
Mobile agents can decide to change its running

from one system to another
They can communicate with other agents

Systema B

Program Interpreter

System A

Program Interpreter

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Mobile agents

Advantages
It can reduce network traffic

Code blocks that are run are
transmitted

Implicit parallelism
Fault tolerance to network failures
Agents can be conceptually

simple
Agent = independent unit of

execution
It is possible to create mobile agent

systems
Emergent behaviour

Adaptability to environtment
changes
Reactive and learning systems

Challenges
Complexity of

configuration
Security

Malicious or incorrect
code

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Mobile agents

Challenges
Complexity of configuration
Security

Malicious or incorrect code

Systema B

Program Interpreter

System A

Program Interpreter

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Mobile agents

Applications
Information retrieval

Web crawlers
Peer-to-peer systems
Telecommunications
Remote control and monitoring

Systems:
JADE (Java Agent DEvelopment framework)
IBM Aglets

Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

	Runtime/behaviour
	Runtime behaviour
	1st part.�Basic and monolith styles
	Data flow
	Batch
	Batch
	Batch
	Pipes & Filters
	Pipes & Filters
	Pipes & Filters
	Pipes & Filters
	Pipes & Filters
	Pipes & Filters - uniform interface
	Pipes & Filters - uniform interface
	Pipes & Filters - uniform interface
	Job organization
	Master-Slave
	Master-Slave
	Master-Slave
	Master-Slave
	Interactive systems
	MVC
	MVC
	MVC
	MVC
	MVC
	MVC variants
	PAC
	PAC
	PAC
	PAC
	Repository
	Shared data
	Shared data
	Shared data
	Shared data
	Shared data
	Blackboard
	Blackboard
	Blackboard
	Blackboard
	Blackboard
	Rule based systems
	Rule based systems
	Rule based systems
	Rule based systems
	Rule based systems
	Invocation
	Call-return
	Call-return
	Call-return
	Client-Server
	Client-Server
	Client-Server
	Client-Server
	Client-Server
	Client-Server stateless
	Client-Server stateless
	Replicated server
	Replicated server
	Client-server with cache
	Client-server with cache
	Client-server with cache
	Event driven architecture (EDA)
	Event driven architecture
	Event driven architecture
	Event driven architecture
	Event driven architecture
	Publish-subscribe
	Publish-subscribe
	Publish-subscribe
	Publish-subscribe
	Actor models
	Actor models
	Actor models
	Actor models
	Actor models
	Actor models
	CQRS
	CQRS
	CQRS
	Event Sourcing
	Event Sourcing
	Event Sourcing
	Event Sourcing
	Adaptable Systems
	Plugins
	Plugins
	Plugins
	Plugins
	Plugins
	Microkernel
	Microkernel
	Microkernel
	Microkernel
	Microkernel
	Reflection
	Reflection
	Reflection
	Reflection
	Interpreters and DSLs
	Interpreters and DSLs
	Interpreters and DSLs
	Interpreters and DSLs
	Interpreters and DSLs
	Embedded DSLs
	Embedded DSLs
	Mobile code
	Mobile code
	Mobile code
	Mobile code
	Mobile code
	Code on demand
	Code on demand
	Code on demand
	Code on demand
	Remote evaluation
	Remote evaluation
	Remote evaluation
	Remote evaluation
	Mobile agents
	Mobile agents
	Mobile agents
	Mobile agents
	Mobile agents
	Mobile agents
	End of presentation

