
Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Software Architecture
Basic definitions

Jose E. Labra GayoCourse 2020/21



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Contents
Definitions about Software Architecture

About software architecture
Stakeholders
Quality attributes
Constraints



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

What is architecture?
Ethimologically, from greek: 
Architecture = ἀρχιτέκτων
ἀρχι- "chief" 
τέκτων "creator"

Architecture = Process and the product of 
planning, designing, and constructing buildings 
or other structures.



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Vitruvius, "De architectura"
Written between 30 to 15 BC
3 pillars of good buildings

Utilitas (usefulness): 
Be useful and function well for the people using it.

Firmitas (durability): 
Stand up robustly and remain in good condition

Venustas (elegance): 
It should delight people

Can be applied to software systems



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

What is software architecture? (1)
Architecture [ISO/IEC/IEEE 42010:2011, 3.2] 

Fundamental concepts or properties of a system in 
its environment embodied in its elements, 
relationships, and in the principles of its design 
and evolution

Architecture description
Explicit work product expressing an architecture of 

a system, usually via models, text and graphics.
Architecting: 

Process of creating an architecture



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

What is Software architecture? (2)
Fundamental structures of a system...
...which comprise: 

- software elements
- relations among them
- properties of both.



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Architecture vs Design
The distinction is not always clear-cut

Architecture focuses more on:
High level structure of a software system
Significant design decisions of a system

If you have to change them ⇒ High cost

"All architecture is design but not all design is 
architecture" G. Booch



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o Traditional vs software architecture

More stable environment
Physical product/service
Physical limits, difficult to change
Long tradition and history

Great examples to show

Lots of changes in environment
Virtual product/service
No physical limits, easier to change
Relatively new discipline

and we can learn a lot from others

Complex systems
Developed by teams/organizations
Used by people
Both employ styles, patterns, tactics...
And are affected by trends

Similarities

Traditional buildings Software
But lots of differences...



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Other similar disciplines
Civil engineering
Mechanical eng.
Aeronautics
...



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Other architectures
Business architecture
Enterprise architecture
Systems architecture
Information architecture
Data architecture
. . .
Common things about all: Structure and vision



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Benefits of software architecture
A clear vision and roadmap for the team to follow
Technical leadership and better coordination
Answer questions relating to significant decisions, 

quality attributes, constraints and other cross-cutting 
concerns.

A framework for identifying and mitigating risk.
Consistency of approach and standards, leading to a well 

structured codebase.
A set of firm foundations for the product being built.
A structure with which to communicate the solution at 

different levels of abstraction to different audiences.



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Challenges of software architecture
Architects at the ivory tower

Lack of communication
Centralization of all decisions

Bottleneck
Taking too many decisions

Deferring decisions may be better than reversing them
Big design up front

Too much unneeded diagrams and docs
Delays caused by architecting process



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Agile software architecture
Architecture that can react to its environment

Adapting to ever changing requirements
Also known as evolutionary architectures
Good architecture enables agility
Better understanding of trade-offs and decisions

Common anti-pattern: adopting agile software 
development techniques that create non-agile 
software architectures
Caused by too much focus on delivering functionality



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Laws of software architecture (*)
1st law:

Everything in software architecture is a trade-off

2nd law:
Why is more important than how

Question everything
Document architecture decisions

Corollary 1:
If an architect thinks he has found something that is not a trade-off, 
more likely he just haven't identified the trade-off yet

Corollary 2:
All meaningful decisions have downsides

(*) Fundamentals of Software Architecture, M. Richards, N. Ford



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Architecture design
Problem domain Solution domain

Design activity

Design
Objectives

Functional
requirements

Quality
attributes

Constraints

Concerns

Architecture
drivers (inputs)

Architect

Design of the
architecture

(output)



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Architeture drivers
Inputs of the software architecture process

Design objectives
Functional requirements
Quality attributes
Constraints
Concerns



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Design objectives
What are the business goals?
Why you are designing that software?
Some examples:

Pre-sales proposal: rapid design of an initial 
solution in order to produce an estimate

Custom system with established time and costs 
which may not evolve much once released

New increment or release of a continuously 
evolving system



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Functional requirements
Functionality that supports the business goals

List of requirements as use cases or user stories

User storiesUse cases



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Quality attributes
Measurable features of interest to users/developers

Also known as non-functional requirements
Performance, availability, modifiability, testability,…

Also known as -ilities
Can be specified with scenarios

Stimulus-response technique
“If an internal failure occurs during normal operation, the system 

resumes operation in less than 30seconds, and no data is lost”

ISO 25010: list of some non-functional requirements
List: https://en.wikipedia.org/wiki/List_of_system_quality_attributes

https://en.wikipedia.org/wiki/List_of_system_quality_attributes


Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Quality attributes
Quality attributes determine most architectural design

decisions
If the only concern is functionality, a monolithic system

would suffice
However, it is quite common to see:

Redundancy structures to increase reliability
Concurrency to increase perfomance
Layers for modifiability
…

Quality attributes must be prioritized
By the client to consider system’s success
By the architect to consider technical risk



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Constraints
Pre-specified design decisions

Very little software has total freedom
May be technical or organizational
May originate from the customer but also from the 

development organization
Usually limit the alternatives that can be considered 

for particular design decisions
Examples:

Frameworks, programming languages, DBMS,…
They can act as “friends”

Identifying them can avoid pointless disagreements



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Concerns
Design decisions that should be made 

Even if they are not stated explicitly
Examples:

Input validation
Exception management and logging
Data migration and backup
Code styles…
…



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Creativity vs Method

Creativity
Fun
Risk
Can offer new solutions
Can be unnecessary

Method
Efficient in familiar domains
Predictable result
Not always the best solution
Proven quality techniques

Architect



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Types of systems
Greenfield systems in novel domains

E.g. Google, WhatsApp,…
Less well known domains, more innovative

Greenfield systems in mature domains
E.g. “traditional” enterprise applications, 
standard mobile apps
Well known domain, less innovative

Brownfield domains
Changes to existing system 



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Software architect
Discipline evolves
Architect must be aware of

New development techniques
Styles and patterns

Best tool = experience (no silver bullet)
Self experience 
Experience from community

Architect



Software Architecture
S

ch
oo

lo
f C

om
p

u
te

r
S

ci
en

ce
U

n
iv

er
si

ty
of

 O
vi

ed
o

Role of software architect

Principles
Patterns

Styles
Anti-patterns

Tactics

Software 
ArchitectCommunity

Experience

Stakeholders

Technology

Architecture

Objectives
Functional
requirements

Quality attributes
Constraints
Concerns


	Software Architecture�Basic definitions
	Contents
	What is architecture?
	Vitruvius, "De architectura"
	What is software architecture? (1)
	What is Software architecture? (2)
	Architecture vs Design
	Traditional vs software architecture
	Other similar disciplines
	Other architectures
	Benefits of software architecture
	Challenges of software architecture
	Agile software architecture
	Laws of software architecture (*)
	Architecture design
	Architeture drivers
	Design objectives
	Functional requirements
	Quality attributes
	Quality attributes
	Constraints
	Concerns
	Creativity vs Method
	Types of systems
	Software architect
	Role of software architect

