
Microservices 
architecture



Traditional applications



Microservices Applications



Pros/Cons

Monolithic Microservices
 Simplicity of development
 Ease of deployment
 Fewer security concerns
 Better performance
 Easy to scale

 Scalability
 Simple deployment
 Reusable code (different programming languages)
 Agility in changes
 Independent application
 Lower risk (fails)
 More efficient costs

 Limited scalability
 Difficulty in maintenance - Rigidity
 Higher risk - Error dependency

 Complexity
 Latency
 Higher overhead
 Difficulty in transaction
 Greater complexity in configuration management
 Greater complexity in monitoring and debugging



Separate presentation layer from service layer



Strangler pattern



Split the service layer in microservices



Responsible for their own data



Database per microservice pattern

For example, if you are using a relational database, you can use three specific options:
 Private-tables-per-service: Each service has an exclusive set of tables not accessible to 

other services.
 Schema-per-service: Every service has a specific database schema that is not accessible to 

other services.
 Database-server-per-service: Each service has its own database server



Challenges in a microservices architecture



Communication between microservices

Communication between different services is carried out through lightweight 
communication mechanisms, such as:

 REST API requests 
 or message-based protocols like AMQP (Advanced Message Queuing Protocol)

Synchronous communication: the service waits for a response from another service before 
continuing.

Asynchronous communication:, the a service sends a message to another service and then 
continues with other tasks without waiting for a response.



Circuit breaker pattern – Performance



Saga pattern – Transactions



Command Query Responsibility Segregation pattern – Performance



Event Sourcing pattern – Auditing



Sidecar pattern – Flexibility



Backends for Frontends (BFF) pattern 



Aggregator pattern 



API gateway pattern 



Microservices architecture


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20

