
I M P R O V I N G L E G A C Y C O D E
Víctor Llana Pérez

Mario Orviz Viesca

David Pedregal Ribas

Ana Pérez Bango

D E F I N I N G L E G A C Y C O D E
Old and outdated code

Untested code (Michael Feathers)

Costly in the long run if not maintained, even if

the process is feared or even painful

"Legacy code is valuable code that
you are afraid to change."

- Nicolas Carlo
- Code still runing in production

- Provides value and has an impact

R E FA C TO R R E W R I T E
- Safer and more sustainable

- Improve code as you go, as new features

are implemented you evolve the system

(not always viable)

- High risky

- Lack of a way to validate if it works

Use only when

- New system that is based on an old one

- Changing only a small and well-defined

part (isolation of a monolith)
If there are no safety nets :

- Only use "duct tape" fixes (minimal and
temporary)

- Setting safety measures comes first - Auatomated testing
- Monitoring logs
- Lost Documentation
- Lost Knowledge

M A N AG E M E N T
Problems

• We anticipate problems

• They do not understand us

Solutions

• Quantifying technical debt

• Aligning with Business Metrics

4
/

1
1

/
2

0
2

5

By translating technical challenges into business terms, developers can facilitate
management's understanding and support for necessary refactoring initiatives.

C U LT U R E
Problems

• People

• How they operate

• Visibility of new features

Solutions

• Recognition of maintenance work

• Encouraging incremental

refactoring

1
1

/
0

4
/

2
0

2
5Rewriting code later due to new requirements or scale isn't a failure, it's often a sign of success and learning.

Integrate it into daily work. Dedicated sustainability weeks are better than nothing but less ideal

K E Y T E C H N I Q U E S
Different techniques to apply for

dealing with legacy code

B E H AV I O R A L
A N A LYS I S
Analyze legacy code as if it was a crime scene

- You don't know what happen there

- Usage of GIT as a "forensic" tool to understand what
happened through the development of such code

- Detect how often a file was changed (hotspot analysis)

- Know which developers were in charge of what parts of
the code

Adam Tornhill:

- Your Code as a Crime Scene

- Software Design X-Rays

H OT S P OT
A N A LY S I S
- Parts of the code that have suffered a lot of changes

(many commits)

- Complex pieces of code

- Some languages provide tools to detect complex code

- Trend of lines tends to follow the trend of complexity

- Build use case to present to management

Detect critical points in the legacy
code

A U TO M AT E D
R E FA C TO R I N G S
- Some IDEs provide this functionalities

- Underutilized

- The usage of these tools can prevent introducing bugs
when refactoring

- Speeds up the refactoring

- We can use AI to improve this process (we must have a
solid test suite)

Automatization of some refactoring
actions (renaming a variable)

I N V E R T I N G
D E P E N D E N C I E S
- Increase readability

- More testable code

- Easier to refactor

- Isolates the core logic from volatile external
dependencies.

- Dependency Inversion Principle (SOLID principles)

Separating business logic from side
effects

N A M I N G A S A
P R O C E S S
- Better names are found as the knowledge about the

code gets deeper

- Refine the name during the process of developing the
code

- Improves code readability

- Names also act as a signal for refactoring (funciton
DoAAndBAndC())

Inspired by Arlo Belshee. Naming
as an evolving iterative activity

M I K A D O M E T H O D
• Iterative process for very large tasks

• Do as much as you can in 10 minutes, erase and repeat

• Create a mind map of all the tasks needed to complete the

original problem

• When you can finish a task in less than 10 minutes, commit

• Following this method encourages good practices

1
1

/
0

4
/

2
0

2
5

A I I N L E G ACY C O D E
• Supporting role

• Problems evaluating results

• Analyzing, testing and refactoring 1
1

/
0

4
/

2
0

2
5

Q U E S T I O N S

	Diapositiva 1: IMPROVING LEGACY CODE
	Diapositiva 2: Defining Legacy Code
	Diapositiva 3: Refactor
	Diapositiva 4: Management
	Diapositiva 5: Culture
	Diapositiva 6: Key techniques
	Diapositiva 7: Behavioral Analysis
	Diapositiva 8: HOTSPOT Analysis
	Diapositiva 9: AUTOMATED REFACTORINGS
	Diapositiva 10: INVERTING DEPENDENCIES
	Diapositiva 11: NAMING AS A PROCESS
	Diapositiva 12: Mikado method
	Diapositiva 13: AI in legacy code
	Diapositiva 14: Questions

