
MUTATION TESTING AT GOOGLE
Omar Aguirre Rodríguez

Samuel de la Calle Fernández

Raúl Antuña Suárez

Pablo Rodríguez García

Carlos Sampedro Menéndez



WHAT IS MUTATION TESTING?

Mutation testing assesses test suite efficacy by inserting small faults into programs

and measuring the ability of the test suite to detect them.

These faults are called mutants and simulate the bugs you could naturally introduce. 

Tests should detect these mutants correctly. 

2



EXAMPLE

3



MUTATION TESTING SCORE

Not as well defined as line coverage.

4



DIFFERENCES WITH OTHER TESTING METRICS

Line coverage tells you if something is covered or not (objective)

Mutation testing score depends on the quality of the mutants (subjective)

5



DIFFERENCES WITH OTHER TESTING METRICS

6



HOW CAN WE (ACTUALLY) TEST IT?

7



HOW CAN WE (ACTUALLY) TEST IT?

8

• It’s posible to test functions/methods.



CHANGE DETECTOR TESTS

• Test specific implementation details. (usually minor ones)

9



MUTAGENESIS

• Google’s implemetation tool.

• Part of the analysis and code review process.

10



PROGRAMMING LANGUAGES TESTED

11



MUTATION TESTING STRATEGY

12

• There is an AST that allows precise modifications

to source code for mutation testing.

• Mutations apply only to changed lines in a pull

request.

• Prevents irrelevant changes from distracting

developers.



THE ROLE OF AST

•Used to analyze and modify source code

for mutations.

•Each language has its own AST 

implementation.

•No universal AST is used due to limitations

in type information and language

complexity, the AST should be adapted to
the context.

13



ARID NODES

14



SCALING MUTATION TESTING AT

15



GOOGLE'S IMPLEMENTATION OF MUTATION
TESTING

Different from open-source mutation testing

approaches because:

- Most of those open-source implementations are

usually low level (i.e. bytecode mutation).

- Google's implementation modifies the source

code's AST.

This leads to a better visualization for developers

of how these mutants work, when compared to

low level solutions.

16



META MUTANTS IN GOOGLE

The result of embedding all of the mutants together is called a “meta mutant”, which

helps achieve scalability.

This approach has not been adopted in Google yet:

- They have a very efficient object caching system, which makes the benefits of this
practice a lesser priority.

- In the podcast, Goran voices his interest in trying to put it into use in the future, but
he has not had time to get to it for now.

17

Individual mutants Meta mutant



MUTATION TESTING: EFFECT ON DEVELOPERS

Google ran a study for 6 years, collecting data about millions of mutants.

The results showed that:

- Developers write more tests

when mutants come into play,
as they are expected to make

tests that kill the mutants.

- Said tests actually kill them,

and by extension, real bugs

too (next slide).

18

Is mutation testing

implemented?

Leads to more 

effective tests

which kill mutants

Standard development

process, expected

amount of tests



COUPLING EFFECT

Coupling effect/hypothesis: mutants don’t necessarily look like real

bugs, but tackling them likely leads to bugs getting killed in the

process. It’s measured by checking how many bugs correspond
to a mutant.

Google conducted an analysis on this:

- Each project operates differently, complicating the process.

- The results obtained showed:

* In ~70% of the cases, the bug and the mutant were coupled.

* The analysis was very expensive, but the results were worth it.

19

Mutant

Real bug



CHALLENGES AND FUTURE OF MUTATION TESTING

Computational Expense

Extremely high number of possible mutations even for small codebases

Creates computational overhead, as each test must be re-executed against
every mutant

"Random mutation approaches

proved unsustainable despite being

initially interesting"

20



CURRENT CHALLENGES

Equivalent Mutants

Mutants that behave
identically to original 
code despite being

syntactically different

"It is very difficult to
recognize analytically

what mutants are 
equivalent"

Wastes computational
resources and human 

attention

Mutant Quality

"All mutants regarding
caching are useless as 

all of them are 
equivalent"

Some mutations lead 
to syntactic errors

caught by compilers

Many don't represent
realistic programmer

errors

21



FUTURE DIRECTIONS
Intelligent Mutant Selection

Strategic sampling instead of generating all possible mutants

They ended up with 5 or 6 groups of useful mutations

Changes on:

-variables and types

-arrays (e.g. index) and lists

-operators (assignment, arithmetic, logical)

-function/method/service

-modifiers (eg static, transient, synchronized, final, ...)

-inheritance or polymorphism (e.g. casting, super, override, ...)

22



FUTURE DIRECTIONS
Heuristic Approaches

Search-based software testing using

genetic algorithms

"Many improvements can be done with
heuristics to discard useless mutants"

Techniques that lead to discover test 
suites with good testing values

Integration with AI

Tools like TestSpark combining "LLM-

based test generation" 

More targeted and efficient mutation

generation
23



FUTURE DIRECTIONS

Quality Measurement

"We don't know what code quality is, we

cannot measure it!"

But mutation testing helps improve it in 

practice

Conclusion:

The future lies in making mutation testing

more efficient and effective

The goal is improving the overall product, 

not just killing mutants

24


	Diapositiva 1: Mutation Testing at Google
	Diapositiva 2: What is Mutation Testing?
	Diapositiva 3: Example
	Diapositiva 4: Mutation Testing score
	Diapositiva 5: Differences with other testing metrics
	Diapositiva 6: Differences with other testing metrics
	Diapositiva 7: How can we (ACTUALLY) TEST IT?
	Diapositiva 8: How can we (ACTUALLY) TEST IT?
	Diapositiva 9: Change detector tests
	Diapositiva 10: Mutagenesis
	Diapositiva 11: Programming languages tested
	Diapositiva 12: Mutation Testing Strategy
	Diapositiva 13: The role of ast
	Diapositiva 14: Arid nodes
	Diapositiva 15: Scaling Mutation Testing at
	Diapositiva 16: GOOGLE'S implementation of mutation testing
	Diapositiva 17: Meta mutants in google
	Diapositiva 18: Mutation testing: effect on developers
	Diapositiva 19: Coupling effect
	Diapositiva 20: Challenges and Future of Mutation Testing
	Diapositiva 21: Current Challenges
	Diapositiva 22: Future Directions
	Diapositiva 23: Future Directions
	Diapositiva 24: Future Directions

