
Software as an
Engineering
Discipline
SE Radio 574: Chad Michel

by: Alba González Arango
 Lara Haya Santiago
 Daniel Fernández Cabrero
 Umut Dolangac

01 Introduction & Foundations of Software
Engineering

02 Business & Complexity in Software
Engineering

03 Software Design, Quality, & Engineering
Constraints

04 Leadership, Training, & Challenges In
Software Engineering

Contents

Introduction & Foundations of
Software Engineering

Degree in Computer Engineering

Master in Computer Science

Head of Engineering at Don’t Panic Labs

Co-author of Lean Software Systems Enigneering

Chad Michel’s Background

https://m.media-amazon.com/images/S/amzn-author-media-prod/bao70slf3jjpg1krfmdk2q9j0j._SY450_CR0,0,450,450_.jpg

Software Development vs. Software Engineering

Difference between both approaches
Software development and software engineering differ in their level of rigor.
Software development focuses on quickly creating functional applications,
often prioritizing speed and convenience. Software engineering, on the
other hand, treats software creation as a structured process, emphasizing
planning, discipline, and best practices.

Software
Development

Easy to start
Lacks rigor
Less quaility overall

Software
Engineering

Discipline
Customer needs
Long-term thinking

Importance of Rigor in Software Engineering

Engineering vs. Scientific rigor
In science, they are building to learn something, while in engineering we
are trying to learn how to build things.

Why rigor matters for long-lasting
systems?
Creating durable software requires a structured approach. Rushing into
development without proper research often leads to fragile solutions that
fail over time. Since software exists to fulfill business objectives, considering
factors like maintainability, cost, and risk from the beginning is crucial to
ensuring its long-term success.

Business & Complexity in
Software Engineering

Business language in Engineering

Schedule
Meet the deadline

Risk

Provide certainty to the
business

Cost

Shouldn’t be much more
elevated than expected

Planning and trade-offs

Trade-offs are
necessary

No unlimited budget
No unlimited time

Use estimates

Effort to create,
modify and mantain
In hours and points

Planning is
essential

“Plans are imperfect but a
good enough plan can be
better than no plan at all”

Complexity in Software Engineering

Objective complexity
Costumer’s goals
Measurables
Challenges

Solution complexity

Be aware of implications of the
delivery
Identify solution delivery
problems
Avoid unexpected issues

Requirements complexity

Very important to manage
Often duplicated, inconsistent or
contradictory
Improved by agile tools

Managing agility and control Agility
Requirements complexity
 +
 solution complexity

Design for change

Assume changes will appear
Adapt to change
A new requirement shouldn’t
require big changes

Design is iterative

We cannot avoid changes
We can ensure to adapt for
changes

Share the design

Identify weak points
Get different perspective

Software Design, Quality, &
Engineering Constraints

The importance of early issue
detection

Bugs don’t just come from code
Many originate from unclear requirements and poor design. About
50% of product bugs stem from bad requirements, leading to costly
and stressful fixes later in production.

Bugs Exist Beyond
Code

Issues can stem from
bad requirements and
poor design
Fixation on code bugs
often overlooks early-
stage mistakes

Cost of Late Bug
Discovery

Around 50% of product
bugs come from
unclear requirements
Fixing bugs in
production is expensive
and stressful

Prevention Over
Fixing

Strong planning and
clear requirements
reduce costly mistakes
Early detection makes
fixes easier and cheaper
Proper testing prevents
new issues while fixing
old ones

Quality Assurance vs. Quality Control

Quality isn’t just about testing at the
end
It must be built into every step of development. Quality Assurance
(QA) is proactive, ensuring good practices from the start, while Quality
Control (QC) is reactive, catching issues later.

Toyota’s Andon Cord Concept
Inspired by Toyota’s Andon Cord, teams should feel empowered to
stop development when quality concerns arise, preventing bigger
problems down the line.

Institutionalizing Quality

Testing has to be part of the entire
team’s mindset
Building a culture of quality ensures that developers, designers, and
project managers prioritize quality from the start. Addressing issues
early prevents last-minute fixes.

The chief engineer plays a key role in educating and guiding the
team to maintain high standards, especially in fast-paced
development environments.

Leadership, Training, & Challenges In
Software Engineering

Leadership

A good leader keeps team members consistently
pulling in the same direction.

Chief Engineer:

Knows lots of differents areas(hosting cloud,
managing, security etc.)

thinks overall

Guides and educates new team members(kinda
like coach)

Ensuring consistency in engineering teams

Motivates

Training

training helps engineers develop long-term skills
and quickly adapt to new environments.

What to do?

Learn core of systems not just tools

Learn from others in the community to improve
practices.

Go to internal workshops

Lots of practice

Challenges In Software Engineering

Software is Hard.
 Donald Knuth

Tools are helpul, but using them does not makes you
software enginner. Why?

Without knowing how to design a system, you
cannot solve unsolved problems or update old
technologies to the current standards.

Other challenges:

Building architectures that support long-term
growth.

Rapidly Evolving Technology

Changing Requirements

THANKS!
Time for your questions

