
Defining Legacy Code
Legacy code is often defined simply as untested code or as old and outdated code, but
according to Nicolas Carlo, it is valuable code that has an impact (that comes from
being in production, serving clients...) and that you are afraid to change. The reluctance
to modify it comes from risky factors such as the lack of tests, the complexity of the code
and the possible missing documentation or knowledge. As such, maintaining this code
can be painful but it avoids long-term consequences.

Refactor VS Rewrite
Although at first glance they may appear similar, there are some key differences between
refactoring and rewriting when it comes to legacy code:

- Rewriting is a highly risky approach as there may be no way to guarantee whether
the new code fulfills every function that the old one did, and as such it often fails.
Nicolas Carlo only recommends rewriting when building a new product based on
the old one from the ground up, or when changing a small and well-defined
isolated part of the code.

- Refactoring is the best approach overall, as it is safer and sustainable. It can also
be implemented in an incremental way, and it is highly beneficial to incorporate it
into the daily work, although this may not be viable in every case.

There are also cases in which neither approach should be used, mainly when the code
lacks safety nets (such as tests, monitoring and documentation), and that means that
only minimal "duct tape" fixes until these safety nets are resolved.

Management and culture

Developers see some problems coming that can be solved with refactoring, however it
is not done because management does not allow this. This is because developers use
technical vocabulary and cannot communicate properly the value and importance of
these changes. There are two ways to fix this problem:

• Quantifying Technical Debt: Assess the costs associated with unresolved bugs
and the opportunity costs of delayed features.

• Aligning with Business Metrics: Demonstrate how technical enhancements can
positively impact service level agreements (SLAs), customer satisfaction, and
overall business performance.

The problem with legacy code is the way people operate in it, which is not helpful. The
culture we usually have in businesses makes visible only new features and the makers
of those features. People maintaining the project keeping it up to date, do not get
recognized. Some ways of solving this problem:

• Recognition of Maintenance Work: Carlo recommends acknowledging and
celebrating efforts such as dependency upgrades during sprint reviews, thereby
encouraging proactive maintenance.

• Encouraging Incremental Refactoring: Carlo advocates for integrating
refactoring into regular development workflows.

Key Techniques
• Behavioral Analysis: Try to understand how the code was created using version

control systems to know more about the legacy code. Key points as how many
times a file was changed or what developer was in charge of each part of the
code

• Hotspot Analysis: Find “hotspots” in the code. Hotspots are files that have
suffered a lot of changes or have a high complexity.

• Automated Refactorings: Delegating tedious refactoring tasks, such as variable
renamings to automatic tools or artificial intelligence

• Inverting Dependencies: Separating business logic from side effects. Isolates
the core logic from volatile external dependencies.

• Naming as a Process: Visualizing naming not as a one-shot decision but as a
evolving iterative activity. Better names are found as the knowledge about the
code gets deeper. Names can be a signal for refactoring.

• Mikado Method: An iterative process where you try to complete a task in a small
period of time, identifying smaller subproblems each time until you can
complete them in less than the established time. Helps tackle very large
problems.

AI in Legacy Code
AI in legacy code can be used as a supporting tool when working with legacy code,
since it can help you understand the code, create new tests or refactor the code.

However, we should not grow reliant on AI to do these jobs for us, since it will probably
introduce mistakes somewhere along the lines. If we are not involved in the process, we
won’t realize since we won’t be able to know if the work done by AI is correct or not
without previous tests on the code.

	Defining Legacy Code
	Refactor VS Rewrite
	Management and culture
	Key Techniques
	AI in Legacy Code

