
EN_07: Gen AI for Software Architecture 

Introduction 
Generative Artificial Intelligence (GenAI) has recently emerged with huge strength 

across various technological fields. As young software engineering students, we've 

explored its implications specifically within the domain of software architecture. In 

this blog entry, we will briefly share fundamental insights into how GenAI can 

potentially reshape architectural practices. 

What is Generative AI? 
Generative AI refers to a subset of artificial intelligence techniques capable of 

creating new content by learning patterns from existing data. Some popular 

examples include GPT-4 for text, DALL-E and MidJourney for images, and Jukedeck 

for music. Within software architecture, GenAI supports activities such as code 

generation, automatic documentation, and quality testing. 

Use Cases in Software Architecture 
During our recent presentation, we identified several significant use cases for GenAI 

in software architecture: 

- Automated Code Generation: Automates repetitive coding tasks, allowing 

architects to focus more on strategic decisions. 

- Legacy Code Refactoring: Simplifies migrating legacy systems to modern 

architectural patterns or different languages. 

- Enhanced Documentation Generation: Improves the accuracy and efficiency of 

technical documentation. 

- Architectural Decision Mining: Assists architects in understanding and reusing 

previous architectural decisions to avoid repeated mistakes. 

- Human-AI Collaboration: Acts as an intelligent assistant, enhancing productivity 

without replacing the software architect. 

- Code Summarization: Provides concise summaries of code, enhancing readability 

and maintainability. 

- Design Exploration and Validation: Facilitates exploration of different architectural 

solutions quickly and validates design decisions through iterative feedback. 

Challenges and Opportunities 
Despite its advantages, GenAI faces several challenges. Generated code can be 

occasionally inaccurate, and due to its probabilistic nature, results can vary for 



identical requests. There's also a risk of overly relying on automated code 

generation, which may lead to neglecting high-level design considerations. 

 

However, the opportunities presented by GenAI are considerable. It can significantly 

accelerate development, reduce time spent on repetitive tasks, and provide valuable 

recommendations based on historical data and past decisions. 

Bridging the Abstraction Gap 
One of the critical strengths of GenAI lies in its ability to bridge the abstraction gap 

between conceptual diagrams or models and concrete code implementations. By 

automatically generating code snippets and implementation structures based on 

architectural diagrams, GenAI improves traceability and consistency. This feature 

can potentially reduce the common 'Ivory Tower Architect' problem, ensuring that 

architectural designs remain grounded and practically implementable. 

Future Outlook 
Looking ahead, we anticipate that advancements in GenAI will continue to refine its 

capabilities, further enhancing its role in software architecture. Fine-tuning AI 

models for specific business requirements and developing more sophisticated 

prompt-engineering techniques will likely improve the precision and relevance of 

AI-generated content. Moreover, as tools evolve, we expect a greater emphasis on 

ensuring the security, privacy, and correctness of outputs, reinforcing trust in AI-

assisted development. 

References 
• Ipek Ozkaya, Carnegie Mellon SEI, Interview on GenAI in Software Architecture, 

Software Engineering Radio Podcast. 

• Microsoft Copilot Official Documentation, GitHub. 

• OpenAI GPT Models, Official Documentation. 

• Architectural Design Principles, Carnegie Mellon University SEI. 

Team 
• Alberto Cuervo Arias 

• Miguel Álvarez Hernández 

• Ignacio Hovan Rojas 

• Carlos Fernández Martínez 

• Turabi Yildirim 

https://se-radio.net/2024/07/se-radio-626-ipek-ozkaya-on-gen-ai-for-software-architecture/
https://learn.microsoft.com/en-us/copilot/microsoft-365/
https://platform.openai.com/docs/models
https://insights.sei.cmu.edu/training/software-architecture-principles-practices/

