

Tidy first?
By

Marco Lorenzo, Carlos Lavilla, Marcos Losada, Diego Martínez

Introduction

Motivation
The book modernizes "Structured Design"1, a classic work which established the fundamental
laws of software engineering. It redefines key concepts like cohesion and coupling, which have
become diluted over time, and critiques the purely dogmatic approach of "A philosophy of Software
Design"2.

Kent Beck
Kent Beck, a prominent American software engineer, is renowned for his contributions to software
development methodologies.
He created Extreme Programming (XP), was one of the seventeen original signatories of the Agile
Manifesto in 2001, pioneered Test-Driven Development (TDD), and co-authored the JUnit testing
framework for Java.

Three main concepts
“Tidy First?” is the first of a trilogy of books that will talk about the three main concepts in software
design for Kent Beck: coupling, cohesion, and tidying.
Beck decided to publish it first since tidying is the smallest skill of design, and he wanted the readers
to practise it before the other more complex skills.

Coupling
Two elements are coupled when changing one of them implies changing the other one. For example,
a function calling another is coupled with respect to changes of the name, because changing the
name of the call implies changing the declaration, and vice-versa. It is important to maintain a low
coupling.

Cohesion
Coupling cannot be always eliminated, but cohesion aims to keep all the coupling inside of an
element. This way, it is much easier to understand and to maintain when having to make changes. For
example, a file is ‘cohered’ when all the functions are coupling between them. We want to have high
cohesion.

Tidying
This is the main concept of the book, and a very common situation for every programmer: we want to
make changes in a messy code, but we know that it will be very difficult to understand the code and
change it. Then we might decide to make tidings, which are simple changes (such as just changing the
name of a function by a more understandable one) that will make it easier for us to understand and
change the code in the present and in the future. Tidings are always structural changes; they do never
change the behaviour of the application.

1 "Structured Design" by Edward Yourdon and Larry L. Constantine.
2 "A philosophy of Software Design” by John Osterhout.

Types of changes
Regarding software there are two main types of changes: behavioural and structural. But we also
should acknowledge that changes in software are closely related to type 1 and 2 decisions, as
explained in the podcast. Type 1 decisions are those that are irreversible and should be analysed
before taking them, whereas type 2 decisions are those that are reversible and therefore should be
taken without hesitation.

Structural
Structural changes are those that do not affect how the system behaves but does affect its structure.
For example, changing the name of a variable or moving a piece of code around a file. These types of
changes are usually reversible (like type 2 decisions).

Behavioural
Behavioural changes are those that affect the functionality of a system. For example, adding a case
statement to a switch or modifying an algorithm. These types of changes are irreversible (like type 1
decisions).

Handling Pull Requests
Kent Beck proposes some recommendations about how PRs could be done aiming to not mix the two
types of changes as it makes the code more likely to have some mistakes.

1. The first option he proposes is to separate structural and behavioural changes in different PRs.
2. The second option he proposes is to separate the different types of changes in commits within

a PR.
3. Lastly, if the previous recommendations were not followed and the developer ends up with a

mess of changes but accomplishes the objective, Kent Beck proposes other two options:
a. Discard it, and then do the changes again applying on of the proposed options.
b. Discard it and do it again in such a way that it can be explained as an easy path from

starting point A to an end point B.

When To Tidy

Tidyings are small, structural changes that improve code without altering behavior. Use them
strategically to simplify future changes, reduce coupling, and enhance cohesion. Separate them from
behavior changes, focus on actively changing areas, and evaluate cost vs. benefit. Experiment
empirically and automate wherever possible for consistent, maintainable code.

Glossary
• Power law: Pattern where a small number of elements have a disproportionate impact,

guiding developers to focus on the most critical areas.
“80% of changes in 20% of the code” – Pareto.

• Empirical software design: Practice of making design decisions based on real-world data,
feedback, and experimentation rather than theory or assumptions.

• Net present value: Difference between present value of cash inflows and the present value of
cash outflows over a period.
Used by Beck to explain that revenue sooner equals more revenue later.

References
SE-Radio (2024). SE Radio 615: Kent Beck on “Tidy First?”. From https://se-radio.net/2024/05/se-

radio-615-kent-beck-on-tidy-first/

Wikipedia Contributors. (n.d.). Kent Beck - Wikipedia. Retrieved 2 24, 2025, from Wikipedia:

https://en.wikipedia.org/wiki/Kent_Beck

	Tidy first?
	By Marco Lorenzo, Carlos Lavilla, Marcos Losada, Diego Martínez

	Introduction
	Motivation
	Kent Beck

	Three main concepts
	Coupling
	Cohesion
	Tidying

	Types of changes
	Structural
	Behavioural

	Handling Pull Requests
	When To Tidy
	Glossary
	References

