
1

Flaky tests
SE Radio episode 572

Mario Junquera Rojas – UO287557 Lucía Ruiz Núñez - UO289267 Didier Yamil Reyes Castro
- UO286866

Introduction
Have you ever experienced the frustration of test failures messing up with your software
development process? If so, you're not alone.

Flaky tests are the Schrodinger cat of tests, this means that they can pass or not without
changing a line of code and until you don't run them you don’t know what will happen. This
is truly a problem because we cannot apply continuous integration nor development as they
need tests to verify that all works.

Types of Flaky Test
Flaky tests can be categorized into two types: order dependent and non-order dependent.

• Order dependent tests exhibit flakiness by failing or passing inconsistently when
executed in a different sequence than originally intended. For instance, if a set of
tests passes when executed in a specific order but fails when reordered, they are
deemed flaky.

• Non-order dependent tests are unaffected by the sequence of execution. In such
cases, flakiness may stem from timing issues, where the test only succeeds during
specific intervals due to functionality constraints within a given time frame.
Additionally, internal system components such as CPU, memory usage, or file
system access can also contribute to test flakiness.

Common Sources of Flaky Tests
• Physical Sources: when we talk about physical sources, we're primarily referring to

the hardware components of a system. However, can hardware impact testing? Yes,
when crafting tests, we often consider the memory and CPU specifications. But
what if these resources are altered - decreased or increased? Such changes can
introduce flakiness into our tests, as resource usage may fluctuate from one test
run to another.

• Software Sources: on the software side, several factors contribute to test flakiness:
- Timing Issues: Consider testing the user interface (UI) of a Wikidata application,

particularly the question generation feature. Sometimes, a test may pass if
questions are swiftly generated, while others may fail due to delayed responses
from the Wikidata API.

- Database and File System Access: Accessing information from databases or file
systems can occasionally result in delays, leading to flakiness in tests reliant on
such data retrieval.

- Date and Time Considerations: These are distinct from timing issues. Imagine a
test suite validating the arrival date and time of a flight. This test is inherently
tied to a specific time zone. But what happens if the test is conducted on a

2

server located in a different time zone, such as Japan? Mismatched time zones
can skew test results unpredictably.

Identification and Response
When it comes to tackling flaky tests, one effective approach is to isolate the suspect test
and rerun it multiple times in a controlled environment. If it passes in isolation, we can
gradually reintroduce other tests from the suite to see if any interactions between them
trigger flakiness.

Thankfully, there are tools available that streamline this process by automating the
rerunning of tests and flagging those that exhibit flakiness. This helps streamline the
identification of problematic tests within a suite.

Once a flaky test has been identified, the next step involves delving into its execution
environment. Tools like Datadog can be invaluable in this regard, providing insights into the
underlying factors contributing to the flakiness. Armed with this information, we can take
proactive measures such as temporarily halting the test from running in continuous
integration pipelines. Additionally, exploring alternatives like mocking third-party services
can help mitigate dependencies that may be exacerbating the flakiness.

AI and Flaky Tests
The role of artificial intelligence (AI) is increasingly being considered. Gregory Kapfhammer
sheds light on how AI, particularly supervised ones can help detect flaky test.
Kapfhammer's supervised learning approach shows promise. It analyzes code patterns to
identify flakiness, albeit with probabilistic outcomes.

However, AI models, including those for flaky test detection, offer insights with a degree of
uncertainty. Despite advancements, there's inherent ambiguity in their conclusions.

An example on how AI works is by using abstract syntax trees (AST) to pinpoint potential
flakiness, particularly in complex code structures. It's also adept at detecting runtime
flakiness, such as memory issues or filesystem misuse.

Tips
While writing test cases, we probably introduce flakiness in those ones, so the following are
some tips to avoid them:

• The most important one: Running tests in a random order. This is a way of
tackling order-dependent test.

• About writing test cases: They must be as simple as possible and follow the SRP.
Also, conditionals or loops in since they mean that a test can have different
paths to follow.

• Tied with previous one, we must have the best possible set up and tear down
methods associated with all tests, especially those test cases that are flaky.
Obviously, there’s a tradeoff here! We must try to find the right balance between
clearing out enough of the shared state of tests so that we don’t have flakiness,
but maybe allowing some shared state as long as it doesn’t negatively influence
the outcomes of test cases.

