

Diagramming in

Software Engineering

Raúl Mera Soto E-mail: UO287827@uniovi.es

Authors

Daniel Sinne Argüelles E-mail: UO282500@uniovi.es

Laura Gómez Menéndez E-mail: UO275725@uniovi.es

Gonzalo Alonso Fernández E-mail: UO282104@uniovi.es

SE Radio episode 566

mailto:UO287827@uniovi.es
mailto:UO282500@uniovi.es
mailto:UO275725@uniovi.es
mailto:UO282104@uniovi.es

Software Architecture 2023/2024

 1

Introduction
Ashley Peacock author of “Creating software with modern diagramming techniques” gives his

opinion about the importance of diagramming in software engineering. Ashley has a very

positive opinion about diagrams, considering their power lies in making information easy to

digest. He emphasizes that, in software engineering, diagrams are essential for documenting

architectures and explaining complex concepts.

Diagrams are particularly useful in meetings and presentations, making information more

understandable. Regarding when to use diagrams in the software life cycle, they can be applied

at various stages, such as architecture documentation, proposals, and in situations where visual

representation enhances understanding.

It is crucial to distinguish between two types of diagrams: short-lived diagrams and long-lived

diagrams. Short-lived diagrams are very useful when you need to understand something you

are working on or explain a complex topic to a colleague. These diagrams typically last a few

hours or a day and are usually class diagrams or sequence diagrams. Then, there are long-lived

diagrams, which add value throughout the entire project, which typically spans many years.

The most common long-lived diagrams are domain model diagrams and C4 models. Typically,

these diagrams are related to the project's architecture and domain models. It is important to

have long-lived diagrams from the beginning of the project life. These diagrams help the entire

development team understand the project and know where to go next.

It is also interesting to know which diagramming tools to use to facilitate the creation and

maintenance of these types of diagrams; an example of this could be "Mermaid."

Diagramming Tools
Draw.io

Draw.io (now diagrams.net) is a versatile online diagramming tool that allows users to create

various types of diagrams, charts, and visual representations effortlessly. It has an easy-to-use

drag-and-drop interface, which makes it a perfect tool for quickly creating diagrams. However,

this interface can also make it very time-consuming to go back and change anything. It can also

be stored in the cloud, making it an option for collaborative work.

PlantUML
PlantUML is a text-based diagramming tool for creating various diagrams. It simplifies the

process with an easy syntax, generating diagrams from plain text. It was one of the first tools

to introduce the idea of diagrams as code. This text-based approach makes it easy for anyone

to quickly understand the diagram and make changes. Because of this it is a good option for

cooperative work.

Miro
Miro is a tool that allows us to have a digital whiteboard. It’s not intended for diagramming,

although it provides the tools to do so. It’s more useful for a team to perform brainstorming or

creating sketches.

It’s commonly used when the members of a team need to work remotely. Its main advantage is

that it allows everyone to interact simultaneously with the whiteboard and make contributions.

Software Architecture 2023/2024

 2

UML Lab
UML Lab is a modelling tool that can be used to support model driven development. It’s

integrated with Eclipse and can be installed as an extension. This tool does not only allow to

draw and create diagrams from your IDE, but also synchronizes them with your code. In this

way, changes on the diagram will be reflected on the code and vice versa.

That makes it easy to use even if we have already written part of the code, we do not need to

worry about updating the diagrams since they can be automatically generated.

Mermaid
Mermaid is a powerful yet accessible tool that lets you create diagrams and visualizations using

text and code. Like PlantUML, it implements the idea of diagrams as code. It does so by

rendering text definitions to create and modify various diagrams dynamically. It is JavaScript

based and Markdown-inspired, making it easy to use for those already familiar with these

languages.

Mermaid Live Editor also allows non-programmers to easily create detailed diagrams.

All of this allows Mermaid to simplify the process of diagramming by creating easily

modifiable diagrams and, therefore, it helps keep documentation up to date with developments,

preventing Doc-Rot.

C4 Model
C4 model is a way to model the software architecture was created by Simon Brown.

The name C4 comes from four diagrams:

▪ System Context Diagram: it is non-technical: no protocols, no databases. It describes

the business interactions between the different systems. This is super powerful for

showing what we are doing to non-technical people as product managers or

stakeholders in a more digestible way, to understand what we are building easily.

▪ Container View: this one relates to the technical layer, for other people like engineers

that want more information. It offers a high-level depiction of the software system's

architecture, emphasizing the containers hosting its components. It identifies and

visualizes containers, illustrates their interactions and dependencies…

▪ Component Diagram: it depicts the high-level structure of software components and

their interactions and starts defining the system boundary where the major components

are identified. Also, relationships between components are shown to illustrate how they

interact.

▪ Code Diagram: It provides a detailed view of the code structure within a specific

component or container. It visualizes modules, their interfaces, dependencies…

Optionally, it can include implementation details such as methods and attributes for

deeper insights into the code structure.

