o "

Mlcroser\q@és
lrade- ()ffs and
falla(nes

An overview of the . « +* e b il - ¢
misconceptions and constralnts of "' l;} " o .
microservices : 2. 1 1I°F . &

e v

;.‘5. . e

c'ﬁatij X .

“~ o‘ -

Y ., = -

\\ 5 . .

\.‘\.'\ - :_‘ wa i

.o. . \'~

Damel Barmentos lIglesias  *
Raul Nunez Garcia



Index

* Monolithic solutions vs. Microservices: an overview

* The rise of microservices and the general discourse

Fallacies and misconceptions
* Conclusions

* Alternatives



Brief recap: Monolithic solutions vs. Microservices

MONOLITHIC MICROSERVICES

BUSINESS \/S MICROSERVICE
LOGIC

MICROSERVICE MICROSERVICE MICROSERVICE




The rise of microservices

* The hyperscalers fed the hype

* A lot of expectations and recent developments v,

* The “trendy” solution
M ®
Spotify
aAlibaba Group °

UBER




The
mainstream

discourse

* Widely seen as the way of the future

* “Adaptable and flexible”

* “The monolithic approaches are outdated”

Google Trends metrics for search of microservices over time




False notions and confusion

Certain ideas about microservices are misconceptions

Sometimes chosen for the sake of it or out of fashion

They are not the solution for everyone, and can be detrimental

The fallacies continue to propose microservices as a silver bullet



The fallacies themselves



Fallacy n"I:
Scalability

* “We need microservices to scale our
applications dynamically”

* Reality: You don’t need microservices to
satisfy regular enterprise scalability
demands.




Fallacy n°2:
Simplicity
* “Microservices are simpler that monoliths”

* Essential complexity persists

* Microservices failures:
|. Crash failures
2. Omission failures
3. Timing failures

4. Response failures

5. Byzantine failures



Fallacy n”5:
Reusability

* Aiming for reusable microservices means
deliberately crippling availability.




Fallacy n”4:
Autonomy

* Microservices cannot improve autonomy
by themselves




Fallacy n”5:
Microservices
lead to better
solution design

* Microservices enforce their boundaries due to
their nature

e Monoliths can be well-structured as well

* Definitely, the chosen runtime structure doesn’t
impede the source code structure by any means



Fallacy n”6:
Microservices
make technology
Changes casier

It takes the same effort to migrate an existing system to a
new technology as it took to develop the system to its current
state

* |t’s true that it’s a bit easier...

* Do not blame monoliths... The guilt is on

|.  Broken IT governance processes

N

2. Application dependencies on the OS level



Conclusions



RGEROIRRIRIRG
MICroServices

* You need to move fast

* You have very disparate NFR’s




When to use
microservices

AH.NOWIDONTHAVETO
UDIININIANVIHINCE



The good

* Suitable if you have short cycle times

* Also if you have tons of concurrent
requests and very high availability
requirements

408 Request
Time-out

SPRINT



The bad

* If you are not able to cope with the side
aspects of the microservices you should
not try to implement them




The ugly

* Microservices don’t suppose any
advantage if you are a single team




What are the
alternatives?

What happens if we...
* Do not need the speed?
* Do not have multiple teams?

* Do not want to pay the price for microservices!?



First alternative: Moduliths



What are
those?

* Division of monoliths into clearly defined and
isolated modules

* Solves the problem of the manteinance,
which can be a nightmare in monoliths

e Good idea if we:

|. Do not need to move fast and/or do
not have multiple teams (and
exponential scaling is not in sight)

2. do not have any special runtime
requirements in terms of very
disparate non-functional requirements

o
3

A VNN

5 WANNNAY

A /

A
K

AN ERRRY

ASARERRNY

AALANANY

v

5 VALY

A VNN

R3S o




Moduliths constraints

aﬁ

Requires decent design skills Requires that everyone The modules should be Code from modules
to find the right module adheres to the rules weakly coupled if the design shouldn’t be traced.
boundaries and contents is OK




Second alternative: Microliths



What are those?

* Service that is designed using module design principles, but that
avoids calls between them

e Good idea if we:

|. Do not need to move fast or have multiple teams

2. Have special runtime requirements in terms of very disparate Non
Functional Requirements

3. We meet the preconditions for using microservices, but we are not
willing or able to pay for them



Microliths constraints

* Require some status and data reconciliaton
technique

* To satisfy this we have to meet several design
features:

|.  All functionality needed for a use case must
be implemented inside a single microlith.

2. All data required to serve an external
request must be in its database.

3. Reusable functionality needs to be provided
via libraries or some other implementation
or build time modularization
mechanism, not via other services.







