The clean architecture

Marcos Tobias Muñiz (uo270930)

Irene Bello Díaz (uo269570)

Ideas regarding the architecture of systems

- Hexagonal Architecture
- Onion Architecture
- Screaming Architecture
- · . . .

These all have something in common:

SEPARATION OF CONCERNS

Similarities

- Independent of Frameworks
- 2. Testable
- 3. Independent of UI
- 4. Independent of Database
- 5. Independent of any external agency

What is clean architecture?

- Software design philosophy
- Design separated in ring levels
- Main rule:
 Dependency rule.
 Source code
 dependencies can
 only point inwards.

Parts of the ring

- Entities
- Use cases
- Interface Adapters
- Frameworks and Drivers
- □ ...

There's no rule that says you must always have just these four. However, *The Dependency Rule* always applies

What things travel from one layer to another?

- We use the dependency inversion principle.
- Structs/Data transfer objects ... (simple data structures)

Goals of the code architecture

Modular, scalable, maintainable and testeable appliaction.

Separation of concerns.

Flexible to change

React as an implementation detail

First:

- We should not design for React, we should use React for implementing our design
- Do not tie the data with the component
- Aim at usability and resilience to changes

- ♦ What is elements?
- ♦ What data is it expecting?

How could we avoid this?

Design without React

How would a component look following this approach?

- ♦ Reusable
- ♦ Independent
- ♦ Resilient to changes
- ♦ Text does not matter

React does not do magic

Slow down!

Data modelling

Let's think of a simple application

```
state = {
    form: {
        name: "Phone number",
        value: "",
        type: Text,
        placeholder: "Phone number",
        error: ""
    },
    numbers: []
```

- ♦ Represent the data
- ♦ Save other information that would be useful

Modeling events

```
const button = document.querySelector(".btn")

button.onclick = function() {
  console.log("Hello!");
};

// OR

button.onclick = () \Rightarrow {
  console.log("Hello!");
};
```

Functions for data management

```
const addNumber = (state, number) => {
    _.assign({}, state, {numbers: [...state.numbers, number]});
}
```

- ♦ Still no React!
- ♦ Add, delete and modify data
- ♦ Testing becomes easier!

Application layer

- ♦ Business logic
- What happens when a button is pressed?

Presentation layer

♦ The data is still raw!

Recap until now

We have:

- ♦ Data
- ♦ How to manage said data
- ♦ Business logic of our application

We still need to process the data for displaying it!

Data processing

```
const orderedNumbers = (numbers) => {
   numbers.sort();
}

const only9 = (numbers) => {
   numbers.map(number => number.title).filter(number => number.startsWith('9'));
}
```

- ♦ Now it is the time for the function
- ♦ We can add as many as we want

React

There are still two sides:

- ♦ Domain side
- ♦ View side

Domain side

- ♦ We handle states
- States change throughout the component chain
- ♦ A change in the state fires a new render of the component

View side

- Completely independent, generic
- Resilient to changes

Time for questions