The clean architecture

Marcos Tobias Muiiiz (10270930)
Irene Bello Diaz (10269570)

Ideas regarding the architecture of systems

Hexagonal Architecture
Onion Architecture
Screaming Architecture

These all have something 1n
common:

SEPARATION OF CONCERNS

$ e P D

Similarities

Independent of Frameworks
Testable

Independent of Ul
Independent of Database
Independent of any external
agency

What is clean architecture?

. Enterprise Business Rules

1 Software design
P philosophy

" Frameworks & Drivers : D €Sign Separated
in ring levels

1 Main rule:
Dependency rule.
Source code
dependencies can
only point inwards.

-~ Application Business Rules

Parts of the ring

| FEntities The Clean Architecture
1 Use cases
| Interface Adapters
1 Frameworks and , Controllers
DI'lVCl‘S || Enterprise Business Rules

Use Cases || Application Business Rules
" | Interface Adapters

| | Frameworks & Drivers

There’s no rule that says you

must always have just these \ A - , e
four. However, The \ , | ,, Output P
Dependency Rule always \DEY /Y 1
applies LD / et

I
Use Case
Input Port

The Clean Architecture

Controllers

|| Enterprise Business Rules

Use Cases || Application Business Rules

/D Interface Adapters

/D Frameworks & Drivers

I o

Use Case
Output Port

1

Use Case
Interactor

$ < 1>

Use Case
Input Port

Presenter

Controller

The Clean Architecture

|| Enterprise Business Rules

|| Application Business Rules

/[:] Interface Adapters

/D Frameworks & Drivers

I o

Use Case
Output Port

1

Use Case
Interactor

é < 1>

Use Case
Input Port

Presenter

Controller

The Clean Architecture

|| Enterprise Business Rules

Use Cases || Application Business Rules

/[:] Interface Adapters

/D Frameworks & Drivers

I o

Use Case
Output Port

1

Use Case
Interactor

é < 1>

Use Case
Input Port

Presenter

Controller

The Clean Architecture

Controllers

|| Enterprise Business Rules
Use Cases || Application Business Rules
|| Interface Adapters

| | Frameworks & Drivers

I o

Use Case
Output Port

1

Use Case
Interactor

é < 1>

Use Case
Interfaces e Input Port

Presenter

I

What things travel from one layer to another?

We use the
dependency
Inversion
principle.
Structs/Data
transfer objects
... (stmple data
structures)

The Clean Architecture Cone

Abstract, General, Rarely Change

D Enterprise Business Rules
D Application Business Rules
D Interface Adapters

D Frameworks & Drivers

Controllers
Gateways Presenters

Devices

External Concrete, Specific, Change Frequently
Interfaces

Goals of the code architecture

Modular, scalable,
maintainable and testeable
appliaction.

Separation of concerns.

Flexible to change

React as an implementation
detail

First:

& We should not design for React, we should use React for
implementing our design

¢ Do not tie the data with the component

& Aim at usability and resilience to changes

function AElement{{elements}) {
<Typograty>
{elements.map(element => element.title).filter{title =» title.startsWith{'9°)}};
</Typografy>»

® What is elements?

¢ What data is it expecting?

<Componentl:
Componen
<Comp
<Componen

omponent5>

<Componentt
omponent
{Compone

mponen

omponentld:>

<Componentll:

Om FI onen t J. 2 5

mponentl

omponent-M>

How could we avoid this?

& Design without React

i N
fdon't wantiterplay with you anymore |
« M A) |

How would a component look following this
approach?

® Reusable ,
function AElement({text}) {
¢ Independent <Typografy>
o {text};
& Resilient to changes </Typografy>

® Text does not matter

React does not do magic

Slow down!

Data modelling

v L -) "
- -

\ \‘r ; ”

s o5 DATAIS DATAg—

|

Let’s think of a sitmple application

& Represent the data

& Save other information that would be useful

Modeling events

const button = document.querySelector(".btn")

button.onclick = function() {
console.log("Hello!");
b

button.onclick = () = {
console.log("Hello!");
b

Functions for data management

const addNumber = (state, number)} => {
_.assign({}, state, {numbers: [...state.numbers, number]});

¥

& Still no React!
& Add, delete and modify data

& Testing becomes easier!

Application layer

% Business logic

® What happens when a button 1s pressed?

Presentation layer

® The data 1s still raw!

Recap until now

We have:
® Data
& How to manage said data

& Business logic of our application

We still need to process the data for displaying it!

Data processing

const orderediumbers = (numbers) => {
numbers.sort();

¥

const only9 = {numbers} => {
numbers.map({number => number.title).filter(number => number.startsWith{'9'});

}

& Now 1t 1s the time for the function

& We can add as many as we want

There are still two sides:
® Domain side

® View side

Domain side

® We handle states
& States change throughout the component chain

& A change in the state fires a new render of the component

View side

& Completely independent, generic function AElement({text}) {
1: <Typograty>
¢ Resilient to changes et
/T Fy
® Reusable ypograry>

Time for questions

