
BRANCHING 
PATTERNS

LUIS A. FERNANDEZ SUAREZ

KAAN IPEK

MIGUEL LIGERO ARBESÚ

CARMEN RENDUELES MARTÍNEZ



BASE PATTERNS



SOURCE BRANCHING 



MAINLINE
“A SINGLE, SHARED, BRANCH THAT ACTS AS THE CURRENT STATE OF THE PRODUCT”



HEALTHY
BRANCH 

Self Testing Code

Directly implementation

More production



INTEGRATION PATTERNS



MAINLINE 
INTEGRATION



LOW FREQUENCY

Integration Frequency



HIGH FREQUENCY

Integration Frequency



COMPARING
FREQUENCIES

"if it hurts… do it more often"



CONTINUOUS INTEGRATION

Continuous 
Integration

Self-Testing 
Code

Works 
Wonders



COMPARING FEATURE BRANCHING AND CONTINUOUS INTEGRATION

If you know You can merge every day

Choose

Continuous Integration

If you do not know that

Choose

Feature Branching



COMPARING FEATURE 
BRANCHING AND 

CONTINUOUS 
INTEGRATION



PREINTEGRATION REVIEW

Commit sent to be 
reviewed

Other member checks it
and makes comments

Commit is changed

Pushed to mainline



PREINTEGRATION 
REVIEW

Popular for Open Source
projects

Generates integration friction

Modularity is very important
for integration



MAINLINE TO 
PRODUCTION



RELEASE BRANCH



MATURITY BRANCH



LONG LIVED 
RELEASE BRANCH

Release Branch + Maturity Branch



ENVIROMENT 
BRANCH



HOTFIX BRANCH



RELEASE TRAIN

Variation: Loading future trains



RELEASE-READY 
MAINLINE



OTHER PATTERNS



Experimental Branch

• Several experimental aproaches

• Code may be abandoned

Collaboration Branch

• Share code among collegues

• When code is not visible to others.

Team Integration Branch

• Used when work is divided into sub-groups

• MAINLINE of the sub-group


