School of Computer Science, University of Ovig

EN

English

(SOFTWARE

_ ARCHITECTURE
Software architecture

Lab. 05
Building automation

Maven, Gradle, npm, grunt,...

Dependency management

Jose Emilio Labra Gayo

Pablo Gonzdlez
2020-21 Irene Cid

Paulino Alvarez

Software architecture H

Software builders

- Tasks

= Compilation
* From source code to binary code

= Packaging
- Dependency management and integration
» Also called linking

s Test execution

s Deployment

» Documentation creation / release notes

School of Computer Science, University of Oviedo

Software architecture H

Building automation

- Automatize building tasks
 Objectives:
= Avoid errors (minimize “bad buildings")
= Eliminate redundant and repetive tasks
» Manage complexity
= Improve the product quality
= Store a building and release history
= Continuous integration
= Save time and money

ity of Oviedo

School of Computer Science, Univers

Software architecture H

Automation tools

» Makefile (C)

« Ant (Java)

« Maven (Java)

- Npm (Node.js)

« SBT (Scala, JVM languages)

- Gradle (Groovy, JVM languages)
- rake (Ruby)

* etc.

ity of Oviedo

Univers

School of Computer Science,

Software architecture H

Maven

Building automation tool

» Describe how to build the software
 Describe software dependencies
Principle: Convention over configuration

- Maven provides a default behaviour for the
project

ity of Oviedo

School of Computer Science, Univers

mMaven

Software architecture H

Maven

Building phases:

clean, compile, build, test, package, install, deploy
Module identification
3 coordinates: Group, Artifact, Version
Dependencies between modules
Configuration: XML file (Project Object Model)
pom.xml

School of Computer Science, University of Oviedo

mMaven

Software architecture H

Maven

Artifacts storages
Store different types of artifact
JAR, EAR, WAR, ZIP files, plugins, etc.
All the interactions are done through the repository
Without relative paths
Share models between development teams

School of Computer Science, University of Oviedo

mMaven

Software architecture H

Maven

POM file (pom.xml)
XML syntax

Describe a project
Name and version
Artifact type (jar, pom, ...)
Source code localization
Dependencies
Plugins
Profiles
Alternative building configurations

School of Computer Science, University of Oviedo

mMaven

Software architecture H

Maven

Project identification

GAV (Group, Artifact, version)
Group: Group identifier
Artifact: Project name

Version: Format {Bigger}.{Smaller}.{Development}
"-SNAPSHOT* can be added (during development)

<?xml version="1.0" encoding="UTF-8"?2>

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>es.uniovi.asw</groupId>
<artifactId>Entrecine8</artifactId>
<version>l.0</version>

</project> ma ven

School of Computer Science, University of Oviedo

Software architecture H

Maven

Directory structure

Maven uses a conventional structure
src/main
src/main/java
src/main/webapp
src/main/resources
src/test/
src/test/java
src/test/resources

School of Computer Science, University of Oviedo

mMaven

Software architecture H

Maven

Development cycle
generate-sources/generate-resources

compile
: test
E k Invocation:
5 PaC age. mvn clean
] Integration-test mvn compile
: . mvn clean compile
Z install mvn compile install
: deploy
: clean

mMaven

Software architecture H

Maven

Automatically managing of dependencies
Identification through GAV

Environment
=]
k5 1 < ject>
: compile projec
E test <dependencies>
£ . <dependency>
5 provi ded <groupld>javax.servlet</groupId>
- <artifactId>servlet-api</artifactId>
£ Type <version>2.5</version>
3 . <scope>provided</scope>
g jar, pom, war,... </dependency>
g . . .
§ </dependencies>
% </project>
=
: Imaven

Software architecture H

Maven

Automatically managing of dependencies
Dependencies are downloaded
Stored in a local repository

Intermediate repositories can be created (proxies)
Example: common artifacts for a company
Transitivity
B depends of C
A depends of B -> C is also downloaded

School of Computer Science, University of Oviedo

mMaven

Software architecture H

Maven

Multiple modules
Big projects can be divided

Each Project creates an artifact
They have their own pom.xml file

The parent project groups all of them

<project>

<packaging>pom</packaging>
<modules>
<module>extract</module>
<module>game</module>
</modules>

</project> ma ven

School of Computer Science, University of Oviedo

Software architecture H

Maven

Other phases and plugins
archetype:generate - Generates the archetype of the project
eclipse:eclipse — Generate eclipse project
site — Generate website of the project
site:run - Generate website and runs server
javadoc:javadoc — Generate documentation
cobertura:cobertura — Informs of the code coverage
checkstyle:checkstyle — Check the codification style

School of Computer Science, University of Oviedo

Software architecture H

Gradle

- Designed specifically for projects based on Java.
- Based on Groovy instead of XML
» To build multi-projects.

ity of Oviedo

School of Computer Science, Univers

Software architecture H

Gradle

- Two basic concepts
= Project: Something that we build (for example jar
files) or what we do (deploy our application)
= Task: Atomic pieces of work during a build (for
example compile our project or launch tests)

ity of Oviedo

School of Computer Science, Univers

Software architecture H

Gradle

» Tasks:

= Scripts are saved in build.gradle.

» Next example defines a task named “hello” that is
used to print “ASW”

task hello {
doLast {
printin ‘ASW’
}

}
= Execution:

C:\> gradle —q hello

School of Computer Science, University of Oviedo

Software architecture H

Gradle

- Add dependencies to the tasks: A task can be
only executed when the taks that it depends on

finish
task taskY << {
task taskX <<'{ | , printin 'taskY’ }
println 'taskX’ } task taskX << {
task taskY(dependsOn: 'taskX') << { printin 'taskX' }
println “taskY" } taskY.dependsOn taskX

« Execution result:

taskX
taskY

School of Computer Science, University of Oviedo

Software architecture H

Gradle

- dependencies: Similar to Maven the libraries are
downloaded from a repository (it can even be a
Maven repository)

apply plugin: ‘java’
repositories {
mavenCentral()
}
dependencies {
compile group: 'org.hibernate', name: 'hibernate-core’, version: '3.6.7.Final’
testCompile group: 'junit’, name: 'junit’, version: '4.+'

}

School of Computer Science, University of Oviedo

Software architecture H

Gradle

- Dependency configuration

= Compile: The dependencies required to compile
the source code of the project.

» Runtime: Dependencies required by the
producction classes during runtime.

= Test Compile: Dependencies used to compile the
test classes.

» Test Runtime: Dependencies required to execute
the tests.

School of Computer Science, University of Oviedo

Software architecture H

Gradle

- External dependencies: Dependencies which
some of their files are built outside the current
build. They are stored in an external repository
like Maven central:

dependencies {
compile group: 'org.hibernate', name: 'hibernate-core’, version: '3.6.7.Final’

}

School of Computer Science, University of Oviedo

Software architecture H

Gradle

- Repositories: When external dependencies are
added Gradle searches them in a repository

repositories {
mavenCentral()
}

School of Computer Science, University of Oviedo

B
Gradle - plugins

- Plugin: Set of tasks

= Extends the basic model of Gradle

= Configs the Project

= Applies specific configurations
* 2 types

= Scripts: Can be applied locally or remotely
apply from: 'other.gradle’
» Binaries: Identified by a plugin id

plugins { plugins {
id 'java' id "com.jfrog.bintray"
version "0.4.1"

}

School of Computer Science, University of Oviedo

apply plugin: JavaPlugin)

Software architecture H

npm

Node.js Package Manager
Initially created by Isaac Schlueter
Later became Npm inc.
3 things:
1. Website (https://www.npmjs.com/)
User and organization management
2. Software registry
Public/private packages
3. CLI application
Dependency and task management
Configuration file: package.json

ity of Oviedo

School of Computer Science, Univers

https://www.npmjs.com/

Software architecture H

npm configuration: package.json

- Configuration file: package.json
= npm init creates a simple skeleton

o Fields: |

"name" : "...mandatory...",
"version": "...mandatory...",
"description": "...optional...",
"keywords": oou"y,

. "repository'": {... },

o=

2 "author": "oou",

< "license": oLy,

g "bugs" : {...},

£ "homepage" : "http://. . .",

3 "main" : "index.js",

£ "devDependencies": { ... },

% "dependencies": { ...}

% "scripts": { "test": " ... " },

g "bin" : {...},

Q

E }

3

£

1]

Note: Yeoman provides fully featured scaffolding

R,
npm packages

Registry: hitp://npmjs.org
Installing packages:
Store the dependency in the package.json

2 options:
Local w Only for development
—

npm install <packageName> --save (--save-dev)
Downloads <packageName> contents to node_modules folder

Global
npm install -g <packageName>

School of Computer Science, University of Oviedo

http://npmjs.org/

Software architecture H

npm dependencies

Dependency management
Local packages are cached at node_modules folder
Access to modules through: require('...")
Global packages (installed with --global option)
Scoped packages marked by @

ity of Oviedo

Univers

School of Computer Science,

Software architecture H

npm commands and scripts

Npm contains lots of commands
start -> node server.js
test -> node server.js
1s lists installed packages

Custom scripts:
run <name>

More complex tasks in NodeJs
Gulp, Grunt

School of Computer Science, University of Oviedo

https://docs.npmjs.com/cli-documentation/

https://docs.npmjs.com/cli-documentation/

Seftarearchitectire ________________ i
NPM packages

- Dependencies: Stored in package.json
- Package: Identified by name and version
 Rule for names:

= Less than or equal to 214 characters.

» Can’t start with a dot or an underscore.

= New packages must not have uppercase letters in
the name.

» The name ends up being part of a URL, an
argument on the command line, and a folder
name. Therefore, the name can’t contain any non-
URL-safe characters.

School of Computer Science, University of Oviedo

Software architecture H

NPM semantic versioning

- Version of the package: Semantic versioning
= Must be parseable by node-semver

- Ranges: Comparators which specify versions
that satisfy the range

= For example, the comparator >=1.2.7 would match
the versions 1.2.7, 1.2.8, 2.5.3, and 1.3.9, but not
the versions 1.2.6 or 1.1.0.

s More at https://docs.npmjs.com/misc/semver

ity of Oviedo

School of Computer Science, Univers

https://github.com/isaacs/node-semver

=
NPM package.json fields

Reference: https://docs.npmjs.com/files/package.json

Fields:

- description

- keywords

- homepage: URL to Project homepage

- bugs: URL of project’s issue tracker and/or the
email address to which issues should be reported

- people fields: author, contributors.

= The “author” is one person. “contributors” is an
array of people. A “person” is an object with a
“name” field and optionally “url” and “email”

ity of Oviedo

School of Computer Science, Univers

https://docs.npmjs.com/files/package.json

Softwmenschitesture_____________]
NPM package.json fields

- files: An array of file patterns that describes the
entries to be included when your package is
installed as a dependency

- file patterns follow a similar syntax to .gitignore,
but reversed:
= Including a file, directory, or glob pattern (¥, **/*,

and such) will make it so that file is included in
the tarball when it’s packed.

s Omitting the field will make it default to ["*"],
which means it will include all files.

ity of Oviedo

Univers

School of Computer Science,

B
NPM files included

- Certain files are always included, regardless of

settings:
= package.json
= README

» CHANGES / CHANGELOG / HISTORY
o LICENSE / LICENCE

= NOTICE

= The file in the “main” field

ity of Oviedo

Univers

School of Computer Science,

=
NPM package.json fields

- main: module ID that is the primary entry point to
your program
= This should be a module ID relative to the root of your
package folder.
= For most modules, it makes the most sense to have a
main script and often not much else.
 browser: If the module is meant to be used client-
side the browser field should be used instead of the
main field.
= This is helpful to hint users that it might rely on

primitives that aren’t available in Node.js modules (eg
a window).

School of Computer Science, University of Oviedo

Softwmenschitesture_____________]
NPM package.json fields

- repository: the place where the code lives.

"repository": {

"type" : "git",
"url" : "https://github.com/npm/cli.git"

}

"repository": {
Iltype" : "Svn",
"url" : "https://v8.googlecode.com/svn/trunk/"

}

School of Computer Science, University of Oviedo

=
NPM package.json fields

- config: Used to set configuration parameters
used in package scripts that persist across
upgrades.

{

"name" : "foo"
"config" : { "port" : "8080" }

}

School of Computer Science, University of Oviedo

=
NPM package.json fields

- dependencies: Dependencies are specified in a
simple object that maps a package name to a
version range.

= The version range is a string which has one or
more space-separated descriptors.

= Version ranges based on semantic versioning:
* See https://docs.npmjs.com/misc/semver

School of Computer Science, University of Oviedo

https://docs.npmjs.com/misc/semver

Softwmenschitesture_____________]
NPM package.json fields

- devDependencies: Dependencies required to
delevop the application such as unit tests.

- URL dependencies:

= You may specify a tarball URL in place of a version
range.

= This tarball will be downloaded and installed
locally to your package at install time.

<protocol>://[<user>[:<password>]@]<hostname>[.<port>][:][/]<path>[
#<commit-ish> | #semver:<semver>]

School of Computer Science, University of Oviedo

e

» GIT URLs: Following form:

<protocol>://[<user>[:<password>]@]<hostname>[:<port>][:][/]<path>[#<commit-ish>|[#semver.<semver>]

- Example

git+ssh://git@github.com:npm/cli.git#v1.0.27
git+ssh://git@github.com:npm/cli#semver:*5.0
git+https://isaacs@github.com/npm/cli.git
git://github.com/npm/cli.git#v1.0.27

School of Computer Science, University of Oviedo

Software architecture H

Task Execution : Grup and Gulp

Execute JavaScript tasks:
= Compress images
» Package modules (webpack)
s Minimize js and css files
= Run tests
= Transcompile — babel.js
These tasks can be directly run with npm scripts
or with Gulp and/or Grunt

ity of Oviedo

Univers

School of Computer Science,

Software architecture H

School of Computer Science, University of Oviedo

Task Execution : Grup y Gulp

» Grup:
= Module fs
= Installation:

npm install -g grunt
npm install -g grunt-cli

 Gulp:
= Module stream
= Installation:

npm install --save-dev gulp
npm install -g gulp-cli

= package.json configuration . sulpfile.js configuration

{ "name": “ASW",
"version": "0.1.0",
"devDependencies": {
"grunt-contrib-jshint": "~0.10.0",
"grunt-contrib-nodeunit": "~0.4.1",
"grunt-contrib-uglify": "~0.5.0"
}

}

function defaultTask(cb) {
// tareas

cb();
}

exports.default = defaultTask

Software architecture H

Examples

Wrapper

module.exports = function(grunt) {
// CONFIGURE GRUNT
grunt.initConfig({

(pkg.name)

pkg: grunt.file.readJSON('package.json’),

D;
grunt.loadNpmTasks(‘grunt-contrib-uglify’);
grunt.registerTask('default’, ['uglify]);

¥

Wrapper

gulp.task(jpgs’, function()

{ return gulp.src('src/images/*.jpg')
.pipe(imagemin({ progressive: true }))
.pipe(gulp.dest(‘optimized_images")); });

School of Computer Science, University of Oviedo

End

OPRIAQ JO AJISIDATU() ‘9OURINS JaIndwo)) Jo [00oYd2S

Q
i
=
&
Q
s
opmi
=~
(D)
i
«
Q
i
c.nma
=)
n

	Software architecture
	Software builders
	Building automation
	Automation tools
	Maven
	Maven
	Maven
	Maven
	Maven
	Maven
	Maven
	Maven
	Maven
	Maven
	Maven
	Gradle
	Gradle
	Gradle
	Gradle
	Gradle
	Gradle
	Gradle
	Gradle
	Gradle - plugins
	npm
	npm configuration: package.json
	npm packages
	npm dependencies
	npm commands and scripts
	NPM packages
	NPM semantic versioning
	NPM package.json fields
	NPM package.json fields
	NPM files included
	NPM package.json fields
	NPM package.json fields
	NPM package.json fields
	NPM package.json fields
	NPM package.json fields
	NPM
	Task Execution : Grup and Gulp
	Task Execution : Grup y Gulp
	Examples
	Número de diapositiva 44

